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Abstract

In display advertising, most advertisement inventories
are sold via real-time auction. Advertisers typically em-
ploy automatic bidding agents to make a bid on their be-
half. Traditionally, the ad auction mechanism has been
a second-price (SP) auction. However, a giant platform
has changed the mechanism to the first-price (FP) auc-
tion. Therefore, we study the design of a bidding agent
in the FP auction environment. The agent attempts to
achieve the target impressions and the target spend. We
consider two realistic cases: a fully observable situa-
tion, where the winning price is observed after each auc-
tion and a partially observable situation, where you only
know whether you win or lose an auction. For each case,
we provide a bidding agent to learn to submit a bid to
meet these targets online. We prove the theoretical per-
formance guarantee using statistical tools. Finally, we
conduct experiments to assess the performance of the
proposed algorithms. Surprisingly, we experimentally
show that the algorithm for the partial information set-
ting performs nearly as well as that for the full informa-
tion setting.

Introduction
In the past decade, a means to sell and buy display adver-
tisements (ads) on the Internet via real-time bidding (RTB)
has been dominant. In RTB, when a user visits a website that
has ad inventories, there is an auction on a platform called
Ad Exchange. Advertisers send their bid to Ad Exchange,
who decides a winner of the auction. The winner’s ad is
placed on the website. It is counted as one impression. The
above auction process happens within a fraction of a second
and there are billions of auctions in one day. Hence, auction-
based marketplaces for display ads have necessitated the de-
sign of a bidding agent to automatically compute a bid price
and make the bid on behalf of advertisers.

Advertisers typically have some goals such as a target
quantity of acquired impressions and a target spend. We as-
sume that advertisers would rather use up the total budget
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than stay within budget. This is because different advertis-
ers have different pieces of information on the value of a spe-
cific user, and thus the bid price for a valuable user tends to
be high (Ghosh et al. 2009a). Exhausting the budget means
acquiring valuable impressions. Therefore, we focus on bid-
ding agents that achieve these two goals: the target number
of impressions and the target spend.

We would like to design a bidding agent to win d impres-
sions and spend t per impression. We assume that the bid-
ding agent knows the total supply, or the number of coming
ad opportunities n. Define f = d/n to be the target fraction
of the supply the agent requires to win. We model the high-
est bid among other participants as being drawn i.i.d. from a
distribution P . Through this paper, we assume that P is con-
tinuous and the support is [a, b]. It depends on the distribu-
tion P for a bidding agent to simultaneously meet the target
number of impressions and the target spend. If only one of
the two targets is feasible, we ignore the target spend and fo-
cus on the target impressions. If the distribution P is known,
it is easy to design a bidding agent (Ghosh et al. 2009b;
Lang, Moseley, and Vassilvitskii 2012). In reality, however,
it is not true that the distribution of the highest bid is known.
Therefore, in order to generate a bidding agent to meet the
goals, it is crucial to learn the unknown distribution P from
the bidding log data.

The information you obtain after each auction differs
among the auction types. In the second-price (SP) auction, if
you make the highest bid, you win an impression but pay the
second-highest bid, which is known as the winning price. In
this case, you will know the winning price. If you lose, you
will only know that your bid is less than the highest bid.
On the other hand, in the first-price (FP) auction, even if you
win an auction, you will not know the winning price because
you pay your own bid. Hence, it is more difficult to learn
the bidding distribution under the FP auction environment.
As far as we know, most of the literature has focused on
the SP auction because the auction mechanism that is used
in most ad exchanges is the SP auction (Ren et al. 2019;
Wu, Yeh, and Chen 2015; Zhang, Yuan, and Wang 2014;
Lang, Moseley, and Vassilvitskii 2012; Ghosh et al. 2009b).
However, Google announces that Google Ad Manager starts
the transition to an FP auction to reduce complexity and



transparency1. Therefore, developing algorithms focused on
the design of bidding agents in the FP auction is an urgent
task.

We propose online learning algorithms to create a bidding
agent for the FP auction setting. In all the suggested algo-
rithms, there are an exploration phase and an exploitation
phase. In the exploration phase, they learn the distribution
P from results of auctions. In the exploitation phase, based
on the estimated distribution, the algorithms compute a bid
price that meets the target fraction and spend to automati-
cally make a bid. As with (Ghosh et al. 2009b), we consider
two situations. The first is a fully observable setting where
the winning price is revealed in each auction. The second
is an intractable setting. It is a partially observable setting
where the winning price is not revealed to anyone and you
only know if you win or lose an auction.

First, in the full information setting, we extend the Learn-
Then-Bid (LTB) proposed in (Ghosh et al. 2009b) to the
FP auction environment. Second, we provide two algo-
rithms: Divide-Then-Bid (DTB) and Binary-Search-Then-
Bid (BSTB) for the partial information setting. We bound
the error of the actual fraction of impressions won by all
the algorithms using statistical techniques. Also, we pro-
vide the proof that the actual fraction of impressions won
converges in probability to the desired fraction. Finally, we
conduct experiments to evaluate our algorithms on synthetic
data derived from real-world data. Surprisingly, we empiri-
cally show that BSTB performs as well as LTB for the fully
observable setting despite the difficulty of learning.

Fully Observable Situation
First, we consider a fully observable setting where the
winning bid price is publicly revealed after every auction.
Namely, whether you win or lose an auction, you will
know the highest bid among other participants. This situa-
tion seems hypothetical, but you can know the highest bid
price among the opponents in Google Ad Manager because
Google sends you a log with the highest bid except for your
own bid after an auction you participate.

We propose an algorithm named Learn-Then-Bid (LTB)
to create a bidding agent under the full information setting.
The procedure of LTB is shown in Algorithm 1. This algo-
rithm is almost the same as the one proposed in (Ghosh et
al. 2009b). The difference is that there is no uncertainty as
to the payment under the FP auction environment. This is
because when you win an auction, you pay what you bid.
Therefore, the bid price that achieves the target spend is the
total budget divided by the required number of impressions.
Inputs for the LTB algorithm are:
• f : the original target fraction,
• t: the target spend per impressions,
• n: the number of supply,
• m: the exploration length.

In the exploration phase, the algorithm attempts to learn
the bid distribution by bidding 0 for the first m opportuni-
ties to obtain observations of the highest bid {E1, . . . , Em}.

1https://support.google.com/admanager/answer/9298211

Algorithm 1 First price Learn-Then-Bid(f, t, n,m)

1: Bid 0 for the first m opportunities to obtain {Ei}mi=1.
2: P̂m(x)← m−1

∑m
i=1 1[Ei ≤ x].

3: Am ← fn

(n−m)P̂m(t)
.

4: Z∗m ← inf{z|P̂m(z) ≥ fn
n−m}.

5: if t ≥ Z∗m then
6: for j ∈ {m+ 1, · · · , n} do
7: Bid t with probability Am, and 0 otherwise.
8: end for
9: else

10: for j ∈ {m+ 1, · · · , n} do
11: Bid Z∗m.
12: end for
13: end if

From the observations, it estimates the empirical cumulative
distribution function (CDF) P̂m(x) = m−1

∑m
i=1 1[Ei ≤

x]. Based on the estimated CDF, it computes a bid value
Z∗m = inf{z|P̂m(z) ≥ fn

n−m} that would achieve the target
fraction after exploration, which we refer to as γ = fn

n−m .
Then, the algorithm moves on to the exploitation phase. It
checks whether Z∗m is less than or equal to the target spend
t. If this is the case, letting Am = fn

(n−m)P̂(t)
, it bids t

with probability Am. This stochastic bidding strategy pre-
vents the algorithm from winning more opportunities than
expected. If Z∗m > t, it ignores the budget constraint and
bids Z∗m.

We prove that the expected fraction of impressions won
by the LTB algorithm converges in probability with rates
that are exponential in the length of the exploration phase
m. To this end, we introduce a statistical tool that bounds
the closeness of an empirically estimated distribution to a
true distribution from which empirical samples are drawn.
It is termed Dvoretzky-Kiefer-Wolfowitz (DKW) inequality
(Dvoretzky, Kiefer, and Wolfowitz 1956). We state it in the
context of the bidding distribution.
Theorem 1 (DKW inequality). Given ε > 0, for all x ∈
[a, b],

Pr
(
|P(x)− P̂m(x)| < ε

)
≥ 1− 2 exp(−2mε2).

We define the properties of an algorithm regarding the ac-
curacy.
Definition 1. Given ε > 0, the algorithm has point-wise
ε-accurate observations at a point x ∈ [a, b] if

|P(x)− P̂(x)| < ε.

Definition 2. Given ε > 0, the algorithm has uniformly ε-
accurate observations if, for all x ∈ [a, b], it has point-wise
accurate observations at x, that is:

∀x ∈ [a, b] |P(x)− P̂(x)| ≤ ε.
We omit uniformly if it is not confusing.
Using these definitions, we restate DKW inequality as fol-

lows.



Corollary 1. Given ε > 0, the probability that the LTB
algorithm has ε-accurate observations is greater than 1 −
2 exp(−2mε2).

Next, we associate the accuracy of the estimation with the
expected fraction of the supply won when bidding Z∗m.
Lemma 1. Given ε > 0, if the LTB algorithm has ε-accurate
observations, then

|P(Z∗m)− γ| ≤ ε.
We omit the proof because it is identical to the proof of

Lemma 4 in (Ghosh et al. 2009b).
The above lemma leads us to conclude that LTB nearly

achieves the target fraction if it has uniformly ε-accurate ob-
servations. Before the main result, we state another lemma
which is used to show it.
Lemma 2. For γ, ε > 0, xγ

x+ε strictly increases and xγ
x−ε

strictly decreases.
This is easy to show by differentiating the functions with

respect to x.
Theorem 2. Given ε and j > m, let Bj be the j-th bid of
the LTB algorithm. If the algorithm has ε-accurate observa-
tions, then

γ − ε ≤ E[P(Bj)|E1, . . . , Em] ≤ γ − ε
γ − 2ε

γ.

Proof. The bidding strategy depends on whether the esti-
mate Z∗m of the bid price that meets the target fraction is
greater than the target spend per impression t. We would
like to show that the inequality holds in either case.

Case 1: t < Z∗m. According to the LTB algorithm, Bj =
Z∗m. From Lemma 1, |P(Z∗m) − γ| ≤ ε. Hence, γ − ε ≤
P(Z∗m) ≤ γ + ε < γ−ε

γ−2εγ.
Case 2: t ≥ Z∗m. In this case,

Bj =

{
t w.p. Am
0 w.p. 1−Am.

Therefore, the expected winning rate after the exploration
E[P(Bj)|E1, . . . , Em] is:

P(t)Am =
P(t)

P̂m(t)
γ ≥ P(t)

P(t) + ε
γ ≥ γ − ε

γ
γ = γ − ε.

This is because P(t) + ε ≥ P̂m(t), P(t) ≥ P(Z∗m) ≥ γ− ε,
and of Lemma 2.

Next, we show the other side of the inequality similarly:

P(t)Am =
P(t)

P̂m(t)
γ ≤ P(t)

P(t)− ε
γ ≤ γ − ε

γ − 2ε
γ.

Lastly, we prove that the expected fraction of impressions
won by the LTB algorithm converges in probability.
Theorem 3. The expected fraction of impressions won
by the LTB algorithm E[P(Bj)|E1, . . . , Em] converges in
probability to γ with the exponential rate in the length of the
exploration phase m.

Proof. Take any ε > 0. By DKW inequality and Theorem 2,

Pr
(
− ε ≤ E[P(Bj)|E1, . . . , Em]− γ ≤ γ

γ − 2ε
ε
)

is greater than or equal to 1−exp(−2mε2). Whenm tends to
∞, the above probability goes to 1 with the exponential rate.
Therefore, the expected fraction of impressions won by the
LTB algorithm converges in probability to the target fraction
γ.

Partially Observable Situation
We now proceed with the partial information case, where
the information on the winning price is not revealed to any-
one, including the auction’s winner. This problem is much
more difficult for the following two reasons. First, partici-
pants only know whether they win or lose an auction unless
the auctioneer gives them additional information on bids the
others make. Second, as discussed in (Ghosh et al. 2009b),
the bidder must pay a cost to obtain information.

As mentioned in the fully observable setting, you can re-
trieve the information on the winning price in Google Ad
Manager. Therefore, it does not seem useful to consider the
partial information situation. However, it would be very ex-
pensive to develop the infrastructure to retrieve and keep the
logs of the highest bid. Besides, currently, other platforms
that use the FP auction typically do not provide information
on other bidders. In conclusion, the partially observable set-
ting is worth considering.

We propose two methods to learn the winning rates of bids
and make a bid to meet the target number of impressions
and spend under the partially observable setting. The first
is the Divide-Then-Bid (DTB) algorithm, where to estimate
the winning rate, it places bids in order of the lowest to the
highest price in the exploration phase. After the exploration,
it makes the best of the estimated winning rate distribution
to decide the bid price to satisfy the target impression frac-
tion and spend. The second is the Binary-Search-Then-Bid
(BSTB) algorithm, which is inspired by a well-known algo-
rithm named binary search. DTB tries to estimate the win-
ning rates of all the possible bids. However, we have only
to know the bid price to meet the target fraction. Therefore,
this algorithm merely tries to search for the bid price that
satisfies the target fraction.

Divide-Then-Bid
We describe the DTB algorithm in Algorithm 2. Inputs for
DTB are:

• f : the original target fraction,

• t: the original target spend per opportunity,

• n: the supply of opportunities,

• m: the number of samples to estimate the winning rate,

• l: the number of points to divide the bidding range.

DTB puts l points equally spaced in the possible range of
bid value [a, b]. Then, it places a bid of each pointm times to



Algorithm 2 Divide-Then-Bid(f, t, n,m, l)

1: gremain ← fn; budget← tgremain
2: for k ∈ {1, · · · , l} do
3: Sk ← 0.
4: for i ∈ {1, · · · ,m} do
5: Bid k(b−a)

l .
6: if Bid wins then
7: gremain ← gremain − 1.
8: budget← budget− k(b−a)

l .
9: Sk ← Sk + 1.

10: end if
11: end for
12: end for
13: P̂l,m(x)← m−1S

min{k|x≥ k(b−a)
l }

14: t∗ ← budget
gremain

.
15: Am ← gremain

(n−ml)P̂l,m(t∗)

16: Z∗m ← inf{z|P̂l,m(z) ≥ gremain

n−ml }
17: if t∗ ≥ Z∗m then
18: for i ∈ {ml + 1, · · · , n} do
19: Bid t∗ with probability Am, and 0 otherwise.
20: end for
21: else
22: for i ∈ {ml + 1, · · · , n} do
23: Bid Z∗m.
24: end for
25: end if

calculate the winning rate at the point. Based on the winning
rate of each point, it estimates the CDF P as follows:

∀x ∈
[k(b− a)

l
,

(k + 1)(b− a)

l

)
P̂l,m(x) =

Sk
m
,

where Sk is the number of impressions won by DTB when it
makes a bid of k(b−a)

l . The rest of the procedure, including
the bidding strategy, is the same as the LTB algorithm.

Similar to the LTB algorithm, we prove that the expected
fraction of impressions won by the DTB algorithm con-
verges in probability with the linear rate at the number of
samples at each point m. To do so, we introduce a well-
known powerful statistical tool that can be used to prove the
weak law of large numbers, namely Chebyshev’s inequality
(Feller 1968). We state it in a general way.
Theorem 4 (Chebyshev’s inequality). Let X be a random
variable with finite expected value µ and finite non-zero
variance σ2. Then for any ε > 0,

Pr(|X − µ| ≥ ε) ≤ σ2

ε2
.

At first, we prove that it is possible for the DTB algorithm
to accurately estimate the winning rate in a certain region
with high probability.
Theorem 5. Given ε, ε′ > 0 and k ∈ {1, . . . , l}, if l is
large enough, then for any x ∈

[k(b−a)
l , (k+1)(b−a)

l

)
, the

probability that the DTB algorithm has point-wise (ε + ε′)-
accurate observations at x is greater than or equal to 1 −

pk(1−pk)
mε2 , that is,

Pr(|P(x)− P̂l,m(x)| ≤ ε+ ε′) ≥ 1− pk(1− pk)

mε2
,

where pk = P
(k(b−a)

l

)
.

Proof. Now, Sk is a random variable that follows the bino-
mial distribution with two parameters: the number of trials
m and a winning probability pk.

Therefore, P̂l,m
(k(b−a)

l

)
= Sk

m is the unbiased es-
timator of the winning rate pk. Because the expecta-
tion E

[
P̂l,m

(k(b−a)
l

)]
= pk < ∞ and the variance

V
[
P̂l,m

(k(b−a)
l

)]
= pk(1 − pk)/m < ∞, we can apply

Chebyshev’s inequality and we have

Pr
(∣∣∣P(k(b− a)

l

)
−P̂l,m

(k(b− a)

l

)∣∣∣ ≤ ε) ≥ 1−pk(1− pk)

mε2
.

Also, because P is continuous and l is large enough, we
have

P
( (k + 1)(b− a)

l

)
− P

(k(b− a)

l

)
< ε′.

Using these above inequalities, if P(x) ≥ P̂l,m(x), at
least with probability 1− pk(1−pk)

mε2 we have

0 ≤ P(x)− P̂l,m(x) ≤ P
( (k + 1)(b− a)

l

)
− P̂l,m

(k(b− a)

l

)
≤ P

( (k + 1)(b− a)

l

)
− P

(k(b− a)

l

)
+ ε

≤ ε′ + ε.

The first inequality follows because P and P̂l,m increase.
Similarly, if P(x) < P̂l,m(x), −(ε′ + ε) ≤ P(x) −
P̂l,m(x) < 0.

The next corollary extends it to show that DTB can accu-
rately estimate the winning rate of any bid price with high
probability. This statement follows immediately from the
previous theorem.

Corollary 2. Given ε, ε′ > 0, if l is large enough, then the
probability that the DTB algorithm has uniformly (ε + ε′)-
accurate observations is greater than or equal to Πl

k=1

(
1−

pk(1−pk)
mε2

)
, that is,

Pr(∀x|P(x)−P̂l,m(x)| ≤ ε+ε′) ≥ Πl
k=1

(
1−pk(1− pk)

mε2

)
.

Next, similar to the full information, we link the accuracy
of the estimation with the expected fraction of supply won
by the DTB algorithm after the exploration. Let β = fn−w

n−lm ,
where w is the number of impressions won by the DTB al-
gorithm in the exploration. The proof is omitted because it
is identical to the previous ones.



Lemma 3. Given ε > 0, if the DTB algorithm has ε-
accurate observations, then

|P(Z∗m)− β| ≤ ε,
where Z∗m is an estimate of the bid that meets the target

fraction after the exploration.

Theorem 6. Given ε and j > m, let Bj be the j-th bid of
the DTB algorithm. If the algorithm has ε-accurate observa-
tions, then

β − ε ≤ E[P(Bj)|E1, . . . , Eml] ≤
β − ε
β − 2ε

β.

Combining Theorem 6 and Corollary 2, we have the the-
orem that the expected fraction of impressions won by the
DTB algorithm after the exploration converges in probabil-
ity with the linear rate in the number of samples at each point
m.

Theorem 7. If l is large enough, the expected frac-
tion of impressions won by the DTB algorithm
E[P(Bj)|E1, . . . , Elm] converges in probability to β
with the linear rate in the number of samples at each point
m.

Proof. Take any δ > 0. Letting ε and ε′ be δ
2 in Corollary 2,

we have

Pr(|P(x)− P̂l,m(x)| ≤ δ) ≥ Πl
k=1

(
1− 4pk(1− pk)

mδ2

)
.

Therefore, by Theorem 6,

Pr
(
− δ ≤ E[P(Bj)|E1, . . . , Eml]− β ≤

β

β − 2ε
δ
)

is greater than or equal to Πl
k=1

(
1 − 4pk(1−pk)

mδ2

)
. When m

tends to∞, the probability goes to 1.

Binary Search-Then-Bid
DTB tries to learn about the winning rate of every single
bid. However, it is enough to know the winning rate of the
bid that meets the target fraction. Hence, the Binary-Search-
Then-Bid (BSTB) searches for the bid price that satisfies the
target fraction of impressions.

The algorithm procedure is shown in Algorithm 3. As al-
ways, we explain the algorithm in detail. Inputs for BSTB
are:

• f : the initial target fraction of impressions,

• t: the initial target spend per required impressions,

• n: the number of impression supply,

• m: the number of samples to estimate the winning rate,

• ε: the allowable error in the estimation of the bid that
meets the target fraction,

• α: the ratio at which the algorithm divides the range of the
bid value.

Here are the notations in the algorithm.

• zmin: the minimum value of the range that the algorithm
searches,

• zmax: the maximum value of the range,

• z: the current bid that the algorithm makes,

• j: the number of auctions held already,

• gremain: the remaining number of required impressions.

In the exploration phase, the algorithm makes a bid of the
initial price t m times to estimate the winning rate2. If the es-
timated winning rate is less than the target fraction gremain

n−j ,
the left half of the interval [zmin, t] in which the target bid
value is not likely to lie is eliminated and the search contin-
ues on the remaining half, again taking the point that divides
the interval in the ratio α to 1 − α as the new z. Note that
α can be different in each iteration3. Otherwise, the right
half of the interval [z, zmax] is eliminated and the same pro-
cedure is conducted. This process is defined as one itera-
tion. After each iteration, the length of the interval gets α
or 1 − α times smaller. Therefore, if the estimation of the
winning rates is correct and n is large enough, the algorithm
finds the bid price to achieve the target fraction of impres-
sions at finite times. When the exploration stops at Line 17
in Algorithm 3, it estimates the bid value that achieves the
target fraction with accuracy and moves on to the exploita-
tion phase. BSTB does not estimate the winning rate of the
bid price to meet the target spend t∗. Hence, unlike the pre-
vious algorithms, its bidding strategy is deterministic in such
a way that it merely makes a constant bid with probability 1
until it wins the required impressions.

We calculate the probability that BSTB finds the target
fraction and prove that the probability converges to 1 when
m→∞.

Theorem 8. Given ε > 0, if n is large enough, the BSTB
algorithm finds the bid price whose winning rate is within
[βI − ε, βI + ε] at finite times I at least with probability
ΠI
i=1{1− (σ2

i,m/min{|P(zi)−βi+ ε|, |P(zi)−βi− ε|})},
where βi = gremain

n−im and zi is the bid at the ith iteration.

Proof. There is a likelihood that the bid that meets the tar-
get fraction βi moves into intervals eliminated already while
bidding. It is avoidable by checking gremain

n−j is close to the
winning rates at zmax and zmin after each bid. If so, setting
zmax or zmin as z, the algorithm moves on to the exploita-
tion phase. Hence, we assume that the target fraction bid
stays within the searching interval while bidding.

Let Si be the number of auctions won in the ith iteration.
When the true winning rateP(zi) is within [βi−ε, βi+ε], the
estimated winning rate Si

m should be within [βi − ε, βi + ε].
To achieve this, the error in the estimation has to be less than
min{|P(zi)− βi + ε|, |P(zi)− βi − ε|}.

Next, if P(zi) is outside [βi − ε, βi + ε], BSTB should
continue to explore and does not eliminate the interval in

2The initial price can be anything, but in practice t is a good
option.

3If α gets smaller and smaller in each iteration, there is a possi-
bility that the algorithm does not end (e.g. α = 10−i). Therefore,
ensure that α and 1−α are at least larger than a certain small value.



Algorithm 3 Binary-Search-Then-Bid(f, t, n,m, ε, α)

1: gremain ← fn; budget← tgremain;
2: z ← t; zmin ← a; zmax ← b; j ← 0
3: do
4: S ← 0.
5: for k ∈ {1, · · · ,m} do
6: Bid z.
7: j ← j + 1.
8: if Bid wins then
9: gremain ← gremain − 1.

10: budget← budget− z.
11: S ← S + 1.
12: end if
13: end for
14: if S

m
< gremain

n−j
then

15: zmin ← z; z ← z + α(zmax − zmin)
16: else
17: zmax ← z; z ← z − α(zmax − zmin)
18: end if
19: if gremain = 0 or n− j = 0 then Terminate
20: while | S

m
− gremain

n−j
| > ε

21: t∗ ← budget
gremain

.
22: if t∗ ≥ z then B ← t∗ else B ← z
23: while gremain > 0 and n > j do
24: Bid B.
25: j ← j + 1.
26: if Bid win then
27: gremain ← gremain − 1; budget← budget− t∗.
28: end if
29: end while

which the desired bid lies. Particularly, whenP(zi) > βi+ε,
Si

m > βi + ε is required to hold. Similarly, when P(zi) <

βi− ε, Si

m < βi− ε is required to hold. To this end, the error
in the estimation has to be smaller than min{|P(zi)− βi +
ε|, |P(zi)− βi − ε|}.

The probability that the error is less than these values is at
least 1−σ2

i,m/min{|βi−P(zi) + ε|, |βi−P(zi)− ε|}2. In
the Ith iteration, the probability that BSTB finds the desired
bid price is at least ΠI

i=1

(
1 − (σ2

i,m/min{|βi − P(zi) +

ε|, |βi − P(zi)− ε|}2)
)

by Chebyshev’s inequality.

Theorem 9. If n is large enough, let B be the bid in the
exploitation phase, the expected fraction of impressions won
by the BSTB algorithm E[P(B)|E1, . . . , EmI ] converges in
probability to βI with the linear rate in the number of sam-
ples at each point m.

Proof. Take any ε > 0. According to the algorithm, it stops
when it wins the target impressions. Therefore,

E[P(B)|E1, . . . , EmI ] ≤ βI .
By Theorem 8, we have

|P(zI)− βI | ≤ ε
with probability ΠI

i=1{1−(σ2
i,m/min{|βi−P(zi)+ε|, |βi−

P(zi)− ε|})}. Hence, following the same logic as Theorem
2, we have

βI − ε ≤ E[P(B)|E1, . . . , EmI ].

In conclusion, Pr
(
− ε ≤ E[P(B)|E1, . . . , EmI ]− βI ≤

0
)

is greater than or equal to ΠI
i=1{1 − (σ2

i,m/min{|βi −
P(zi) + ε|, |βi − P(zi) − ε|})}. When m goes to ∞, σ2

i,m
goes to 0 in the linear rate, that is, the probability goes to 1
with the linear rate.

Experiment
In this section, we evaluate the suggested algorithms on syn-
thetic data that simulates the real data from the Right Media
Exchange (Ghosh et al. 2009b). This section continues as
follows. First, we describe the data and the experiment set-
ting in detail. Second, we show the results of the LTB al-
gorithm for the full information setting. Lastly, we show the
results of DTB and BSTB for the partial information setting.

Data and Experimental Setting
The synthetic data are drawn from the log-normal distribu-
tion. This is because, according to (Ghosh et al. 2009b), the
real log data in Real Media Exchange is well-fitted with
a log-normal distribution even though the best parameters
vary depending on the publisher. The real data was collected
in the SP auction. However, we do not have enough data for
the FP auction. We assume that the bid in the FP auction fol-
lows the family of the log-normal distributions. We conduct
the experiments varying the mean and the variance of the
log-normal distribution. We show part of the results, but all
the results have the same trend. Some samples drawn from
the log-normal distribution are too large for the real data,
so we discard samples larger than an upper-limit b which is
chosen to be the 99.7th percentile.

The supply n is 50, 000 impressions. To evaluate our al-
gorithms under a wide variety of circumstances, we choose
16 equally spaced values of the target f and t from the in-
terval (0, 1). For each pair of values (f, t), we measure the
actual fraction and spend, running each algorithm 500 times
to average out the sampling fluctuation.

Results: Full Information Setting
The results of the LTB algorithm for the fully observable set-
ting are shown in Figure 1. In Figure 1 (a) and (b), the dotted
line is an ideal one that represents the minimum spending
necessary to achieve the target fraction of supply. The line
is given by max{P−1(γ), t}, that is, when the fraction and
spend goals cannot be satisfied at the same time, the algo-
rithm ignores the target spend and focuses on the target frac-
tion only. The statistics of the spending are summarized by
a box-and-whisker plot where we draw a box from the 25%
to the 75%. A vertical line (the orange one) goes through
the box at 50% (the median) and the whiskers go from the
minimum to the maximum.

Figure 1 (a) and (b) illustrate that the budget spent by the
LTB algorithm is very close to the ideal one. When the bid
price that achieves the target fraction is less than the target
spend per impression, the algorithm bids the target spend
and you pay the target spend. Hence, the target spend is def-
initely achieved. Therefore, boxes in the diagonal line in Fig-
ure 1 (a) are squashed.



(a) (b) (c)

Figure 1: Results of the LTB algorithm with m = 100. (a), (b) Actual spend per impression won, (c) Actual fraction of
impression won.

(a) (b)

Figure 2: Results of the DTB algorithm with m = 100, l = 25. (a) Actual spend per impression won, (b) actual fraction of
impression won.

(a) (b) (c)

Figure 3: Results of the BSTB algorithm with m = 100, ε = 0.01. (a), (b) Actual spend per impression won, (c) Actual fraction
of impression won.

Figure 1 (c) depicts the performance of the target quantity.
The dotted line is an ideal one, so it is a linear function. The
algorithm performs nearly as well as the ideal one for a wide
range of the target spend.

Results: Partial Information Setting
The results of the DTB algorithm are shown in Figure 2. Fig-
ure 2 (a) plots the actual spend. In all settings, the algorithm
overspends the budget. Figure 2 (b) depicts the actual frac-
tion of impressions won by the algorithm. Unlike the target
spend, it achieves the ideal target fraction.

Figure 3 shows the actual fraction and spend the BSTB
algorithm achieved. The most striking result is that the per-
formance of the BSTB algorithm is very close to that of the
LTB algorithm for the fully observable setting. This concurs

well with (Ghosh et al. 2009b). The lack of information on
others’ bids does not burden BSTB even in the FP auction
environment.

Conclusion
In this study, we propose algorithms to design a bidding
agent to make a bid automatically to meet two criteria: im-
pressions and spend in the FP auction environment. In the
full information setting, we propose the Learn-Then-Bid al-
gorithm. In the partial information setting, we propose the
DTB and BSTB algorithms. We theoretically guarantee their
performance in the target fraction of impressions and spend
per impression. While DTB does not work well empirically,
BSTB and LTB perform very well. It is worth noting that
BSTB performs as well as LTB empirically.
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