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Abstract

Our work aims at efficiently leveraging ambiguous demon-
strations for the training of a reinforcement learning (RL)
agent. An ambiguous demonstration can usually be inter-
preted in multiple ways, which severely hinders RL-Agents
from learning stably and efficiently. Since an optimal demon-
stration may also suffer from being ambiguous, previous
works that combine RL and learning from demonstration
(RLfD works) may not work well. Inspired by how humans
handle such situations, we propose to use self-explanation (an
agent generates explanations for itself) to recognize valuable
high-level relational features as an interpretation of why a
successful trajectory is successful. This way, the agent can
provide some guidance for its RL learning. Our main con-
tribution is to propose the Self-Explanation for RL from
Demonstrations (SERLfD) framework, which can overcome
the limitations of traditional RLfD works. Our experimental
results show that an RLfD model can be improved by using
our SERLfD framework in terms of training stability and per-
formance. Some additional details of this paper are in a linked
supplemental material 1

1 INTRODUCTION
Ambiguities commonly exist in communications among
people. Due to possible vocabulary differences, when a hu-
man teacher attempts to train a robot by showing demon-
strations (Robot Learning from Demonstration or LfD),
such demonstrations may also suffer from being ambiguous.
Maybe from the human’s perspective, what he or she intends
to demonstrate is clear, but the robot may still make sense of
it in a different way. Consider an example illustrated in Fig.
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1.1: a robot needs to push two components into two differ-
ent target regions (L1 and L2) that have two different colors
(blue and yellow). Imagine a human teleoperates the robot to
push the ring object into L1 region in blue, and block object
into L2 in yellow. The robot could interpret this demonstra-
tion as pushing the block into the yellow region and ring into
the blue region or pushing the block into the region L2 and
ring into L1.

If humans were in a robot’s position, they may ask them-
selves: What are the features according to the other per-
son that are more relevant to a good decision? After see-
ing the pushing demonstration, the human may start from
a random hypothesize that the object-location relation (e.g.
ring at L1) is more useful than the object-color relation (e.g.
block at yellow). Then they would push ring and block al-
ways to L1 and L2 respectively, no matter which one is
marked in blue or yellow. If the human fails the task once
the yellow and blue colors are exchanged (L1 and L2 in yel-
low and blue respectively), they may consider the object-
color relations (e.g. ring at blue and block at yellow) to be
more relevant to a decision. This procedure is essentially
self-explanation, which can be used to guide a learner to
learn better (Siegler et al. 2002). According to (Siegler et al.
2002), self-explanations are inferences about relational con-
nections among objects and events, like how procedures
cause their effects, and how different structural components
can affect a system.

Note that humans do not look at the world at the level of
pixels, but could at more abstract cognition levels, like con-
cepts ((Lake, Salakhutdinov, and Tenenbaum 2015; Sreed-
haran et al. 2020)), factors ((Körding et al. 2007)), and
symbols ((Oaksford, Chater et al. 2007)). As for robots,
since they take human advice (demonstrations), intuitively
it would be beneficial if robots do disambiguation reasoning
at a similar level to humans so that control-level learning can
be guided. Therefore, we assume the robot has some back-
ground knowledge like classifiers for extracting important
relations that can map continuous states to a set of prede-
fined predicate symbols, which describe various relational
connections among objects and/or events. A robotics expert
could provide such background knowledge that helps solve



a class of tasks (e.g. Pushing).
Therefore, the key insight behind our approach is: by

identifying which object-event relations from each inter-
action are likely to be more relevant to a decision, an
agent can interpret why a trajectory is successful or un-
successful so that its learning would be guided and im-
proved.

Reinforcement-Learning from Demonstration (RLfD)
approaches (e.g. (Hester et al. 2017; Vecerik et al. 2017;
Salimans and Chen 2018; Rajeswaran et al. 2017)) that use
demonstrations to accelerate RL training have the benefits of
only requiring a few demonstrations. However, traditional
RLfD approaches may not be able to handle ambiguous
demonstrations efficiently. An optimal trajectory from hu-
mans may also suffer from being ambiguous. This could
make learners fail the task during training by simply “copy-
ing” the demonstration due to varying initial states, which is
common in robotic tasks.
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Figure 1: Sub-figure (1): the setting of the robot-push task.
There are two target regions indexed by L1 and L2. L1
and L2 are also randomly assigned with colors either blue-
yellow or yellow-blue. To finish the task, the ring and block
should be pushed into the blue and yellow region respec-
tively. Sub-figure (2): an example of a three-step robot ex-
ecution with grounded predicates (p) and self-explanations
(u) per step that is generated from our model. Sub-figure (3):
The SERLfD framework that couples the learning of self-
explaining (inside the blue region) and an RL-Agent (inside
the yellow region). The learning of self-explanation is in-
tegrated into a discriminator. The policy can be viewed as
a generator. A robotics expert provides background knowl-
edge like predicates grounding procedures for robots, which
allow robots to disambiguate demonstrations from non-
experts.

To mitigate this issue, we (robotics experts) give robots
the aforementioned background knowledge so that robots
can understand non-expert demonstrations with human-
relevant knowledge. Robots would then need to identify
salient relations. We introduce a neural network called self-
explanation network (SE-Net) to explicitly output a set of
predicate utility weights per step. Each utility weight in-
dicates how utilizable a ground predicate is for interpret-
ing a decision. Therefore, the utility weights serve as an
explanation hypothesis that self-explains which relations
are important per step (e.g. the “u” columns in Fig. 1.2).
Such information could guide RL-Agents to learn better.
At the step 2 in the Fig. 1.2, while both “ring at blue” and
“ring at L1” are satisfied at this time, weighting them differ-
ently can help the agent to connect only useful relations to its
decision-making. This also shows that using task-agnostic
background knowledge (e.g. human-understandable predi-
cates for a class of tasks) would not remove ambiguity.

However, it is not straightforward to learn to predict
proper utility weights for each predicate by using back-
ground knowledge. While a human demonstrator provides
demonstrations for a specific task, we assume that she/he
would not directly tell robots which predicates are impor-
tant. In other words, we do not have such labels. Inspired
by the aforementioned example of how a human may solve
a similar problem, one promising direction is to motivate
robots to contrastively discover important predicates by dis-
tinguishing between successful and unsuccessful trajecto-
ries. This requires integrating the ability of self-explaning
and that of practising with the current self-explanation hy-
pothesis. To this end, we propose a Self-Explaination for
Reinforcement-Learning from Demonstration (SERLfD)
framework based on Generative Adversarial Inverse Rein-
forcement Learning (GAN-IRL) methods (Finn et al. 2016;
Fu, Luo, and Levine 2017). In the GAN-IRL works, the
learning of a non-linear reward predictor and an RL-Agent
can guide each other in a generative-adversarial fashion. In
our approach, as illustrated in Fig. 1.3, we modify the reward
predictor in GAN-IRL by inserting into it a self-explanation
network (SE-Net) that generates predicate utilities. While
the whole reward predictor can be trained as usual via a
discriminator loss, we essentially use the predicted utility
weights (i.e. self-explanations) to guide the learning of RL-
Agents.

Our main contribution is the SERLfD framework that
contrastively and iteratively learns to use background
knowledge to self-explain which high-level predicates are
task-relevant and meanwhile perform the task. Our SERLfD
algorithm is essentially a modification of traditional GAN-
IRL methods that were used for Imitation Learning (or
LfD). Our SERLfD algorithm combines the benefits of both
worlds (RLfD and GAN-IRL). We extensively evaluate our
SERLfD framework with multiple candidate RL-Agents in
four continuous robotics domains and one discrete Pacman
domain. Our evaluation demonstrates that SERLfD clearly
outperforms traditional RLfD and GAN-IRL methods with
better learning stability and higher scores even in challeng-
ing continuous control domains. To the best of our knowl-
edge, our work opens the direction of learning to self-explain



potentially ambiguous demonstrations to support RLfD.

2 RELATED WORKS
Deep RL from Demonstrations Many works have inves-
tigated the benefits of using RLfD frameworks. The work
(Salimans and Chen 2018) uses states in demonstrations as
starting points to train DRL with short-term interactions. As
such, explorations only happen in a local region around a
good state from demonstrations. (Hester et al. 2017) and
(Vecerik et al. 2017) propose to use demonstrations to ini-
tialize the replay buffer so that the training of a deep Q-Net
((Hester et al. 2017)) or a deep deterministic policy gradi-
ent (DDPG) network ((Vecerik et al. 2017)) can be bene-
fited. (Cruz Jr, Du, and Taylor 2017; Rajeswaran et al. 2017;
Pfeiffer et al. 2018) propose to directly use demonstrations
to initialize neural network parameters by pretraining it with
an imitation learning objective. Besides pretraining a DRL
model, imitation learning can also be used to construct an
auxiliary imitation learning loss ((Vecerik et al. 2017; Nair
et al. 2018)). The work (Gao et al. 2018) addresses the prob-
lem of DRL from imperfect (noisy and corrupted) demon-
strations. (Gao et al. 2018) relies on reward information to
perform a Q-function normalization over actions. However,
learning from ambiguous demonstrations is an orthogonal
issue: Such demonstrations could lead to the highest reward,
may not necessarily be corrupted, but confuses the learner.

Imitation Learning from Ambiguous Demonstrations
So far only a few works have attempted to do robot LfD
from ambiguous demonstrations as in (Breazeal et al. 2006;
Bensch and Hellström 2010; Morales and De la Rosa 2013;
de Haan, Jayaraman, and Levine 2019). (Breazeal et al.
2006) and (Bensch and Hellström 2010) model demonstra-
tion ambiguity as the intention differences of human and
robot. (Breazeal et al. 2006) proposes to let a human teacher
and robot learner gradually improve the learning difficulty
and quality. By explicitly modeling human’s intention and
belief in a Bayesian inference framework, the robot can dis-
cover conflicts, query humans, and learn better. (Bensch and
Hellström 2010) models the ambiguity as a joint hypoth-
esis space of multiple categories of concepts (e.g. colors,
shapes). To disambiguate the demonstration is to reduce the
hypothesis space. (Bensch and Hellström 2010) then pro-
poses a concept learning approach to reduce the hypothesis
space by using new demonstrations step by step. (Morales
and De la Rosa 2013) models the demonstration ambiguity
as a difference in demonstrated actions at the same (or sim-
ilar) state. To disambiguate demonstrations, (Morales and
De la Rosa 2013) adopts clustering algorithms and proposes
a two-level clustering approach to simultaneously catego-
rize similar situations and ambiguous actions in each situa-
tion. Another work (Brown, Niekum, and Petrik 2020) pro-
poses to use Bayesian optimization to infer reward uncer-
tainty learned by an IRL algorithm, which has the poten-
tial of doing imitation learning from ambiguous demonstra-
tions. However, (Brown, Niekum, and Petrik 2020) mainly
focuses on the IRL side and evaluates in simple domains.
The work (de Haan, Jayaraman, and Levine 2019) addresses
distribution drift problems (Ross and Bagnell 2010; Ross,

Gordon, and Bagnell 2011) in imitation learning by avoiding
causal misidentification caused by using ambiguous demon-
strations. While (de Haan, Jayaraman, and Levine 2019)
touches on the RL, it is not an RLfD approach because the
task (environment) rewards are not used. In contrast, accord-
ing to (Rajeswaran et al. 2017) the RLfD approaches and our
work can naturally handle distribution drift problems since
we directly use task rewards.

3 BACKGROUND
Reinforcement Learning and Reward Shaping In our
work, we consider a finite-horizon and discounted Markov
decision process (MDP) model that can be learned by
RL methods. We further assume that the reward function
r(st, at) is sparse, i.e., r(st, at) = 0 in most of the states
s ∈ S. Training RL agents in sparse rewards environments
could be challenging due to the delayed training signals from
effective feedback. One extensively adopted way to ame-
liorate such training is by adding reward shaping, which
provides denser training signals so that the agent could ob-
tain valuable feedback much sooner. However, we need to
be careful at providing shaped rewards. As demonstrated in
(Ng, Harada, and Russell 1999), a poorly-designed reward
shaping function may cause the converged optimal policy to
shift as against the one under original rewards. (Ng, Harada,
and Russell 1999) proves that potential-based reward shap-
ing function, which follows the form in Eq. 1, is the only
class of reward shaping function that can guarantee the in-
variance of optimal policies.

r̂(st, at) = r(st, at) + λΦ(st+1)− Φ(st) (1)
where r̂(st, at) and r(st, at) denote the shaped and original
reward respectively, λ is an adjustment parameter, Φ denotes
any real-valued function, and λΦ(st+1)−Φ(st) is the reward
shaping term. Note that we set λ to 1 in the rest of paper.

Inverse Reinforcement Learning (IRL) IRL is about the
problem that the reward function in an MDP model is un-
known and needs to be discovered from expert demonstra-
tions. Typically in an IRL framework, the unknown reward
function is modeled by a parameterized function of certain
features (Ziebart et al. 2008). The design of our SERLfD
framework is based on GAN-IRL methods like the Guided
Cost Learning (GCL (Finn, Levine, and Abbeel 2016)) op-
timized by Generative-Adversarial Networks (GAN-GCL
(Finn et al. 2016)). GCL and GAN-GCL propose to couple
IRL and RL together to do continuous control learning with
unknown rewards. Such frameworks allow learning nonlin-
ear rewards that help under complex and unknown dynamics
(essentially a model-free IRL).

GAN-GCL integrates IRL and RL by viewing the RL
model as a generator and the IRL model as a discriminator
that are trained in GAN formulation. The IRL model pro-
vides rewards for the RL model. The RL model is trained
to gradually shift its sampling distribution to match that
of demonstrations. The IRL model is trained to distinguish
sampled trajectories from demonstration trajectories, by us-
ing the binary cross-entropy loss in Eq. 2. Using such a dis-
criminator to provide rewards for policy learning can solve
their Imitation Learning problems.



Lirl(Dθ) = Eτ∼p[−logDθ(τ)] + Eτ∼q[−log(1−Dθ(τ))]
(2)

where Dθ denotes a discriminator model. τ denotes a tra-
jectory. The work Adversarial IRL (Fu, Luo, and Levine
2017) further proposes to replace trajectory τ with state-
action pairs, which makes the training more stable:

Dθ(s, a) =
exp{r̂θ(s, a)}

exp{r̂θ(s, a)}+ q(a|s)
(3)

where r̂θ(s, a) denotes the estimation of reward feature on
a pair of state and action. We refer to this version of GAN-
GCL as State-Action-GAN-GCL (SA-GAN-GCL).

4 THE SERLfD FRAMEWORK
In this section, we introduce our SERLfD framework (Fig.
1.3) which couples two objectives together. One is to learn
self-explanations that identify task-relevant relations by dis-
tinguishing between successful and unsuccessful trajecto-
ries. The other is to encourage RL-Agents to use self-
explanations so that RL training can be improved. We intro-
duce a self-explanation network (SE-Net) that maps a state
to a set of utility weights u (self-explanation) that corre-
sponds to a set of grounded predicates values p. The predi-
cates and their recognition classifiers can be viewed as back-
ground knowledge that a robotics expert offered for helping
a robot to handle a class of tasks. We also propose to improve
an RLfD agent with self-explanations by either 1) state aug-
mentation, i.e. 〈s〉 becomes 〈s, p, u〉; or 2) reward augmen-
tation, i.e. r̂θ(s, u, a, r(s, a)) where r(s, a) is task reward
function that comes from an RL environment. The task re-
ward also serves as an indicator that decides whether a tra-
jectory is successful or not. Since we rely on task rewards for
learning both SE-Net and RL-Agent, we do not break RLfD
assumptions that demonstrations are used to guide RL to
maximize accumulative task rewards. Our RL-Agents can be
any deep RL algorithm that is adjusted to learn from demon-
strations a policy that optimizes accumulative task rewards,
e.g. (Hester et al. 2017; Vecerik et al. 2017). To contrastively
learn the SE-Net, we merge the objective of learning to self-
explain into the learning of GAN-IRL frameworks ((Finn
et al. 2016; Fu, Luo, and Levine 2017)). The discrimina-
tors in GAN-IRL frameworks are trained by distinguishing
between two different distributions of trajectories: demon-
strations or generated samples. Unlike GAN-IRL, the dis-
criminator in SERLfD includes the SE-Net and is trained
differently by distinguishing between successful and un-
successful trajectories. We will explain what are grounded
predicate values (Sec. 4.1), how to learn to “self-explain”
(Sec. 4.2), how RLfD learning could be benefited from self-
explanations while RL-Agents also adapts the learning of
SE-Nets further by providing new samples (Sec. 4.3).

4.1 Grounded Predicate Values
A predicate is a logical formulation that describes a rela-
tionship among several objects. The objects that a predi-
cate concerns would form the arguments of the predicate.

Take for instance a predicate “pushed(obj)” in the aforemen-
tioned robot-pushing domain, “obj” is an argument that can
be grounded with “block” or “ring”. When the argument is
grounded, the predicate becomes a grounded predicate, e.g.
“pushed(block)”. In our work, we use a binary predicate
variable to represent if a grounded predicate is satisfied or
not. For example, “pushed(block)” can be represented by a
binary predicate variable “is block pushed”. When it is sat-
isfied, we assign this binary predicate variable with a value
of 1, otherwise -1. We may have a set of grounded predicates
(and thus a set of binary predicate variables), according to
background knowledge, to describe the most important re-
lations. We assume that the classifiers for detecting the sat-
isfaction of such predicates are available. The rapidly grow-
ing computer vision community is already able to provide
high-quality visual recognizers that detect objects and rela-
tions (e.g. through scene graph analysis (Yang et al. 2018b)).
There are also works that improve RL by leveraging ground-
truth symbolic high-level knowledge, e.g. (Lyu et al. 2019;
Toro Icarte et al. 2018; Camacho et al. 2019; Yang et al.
2018a).

4.2 Training the SE-Net in a Discriminator
The input to the Discriminator (in Fig. 1.3) is obtained by
sampling a batch of experiences and grounded predicate val-
ues from buffers Dgood and Dbad. With an experience, SE-
Net takes a state s as input and generates a set of predi-
cate utility weights u: u = SE−Net(s). A predicate util-
ity weight serves as a quantitative estimation of how utiliz-
able the corresponding predicate variable is to interpret why
making a decision is promising, given a state. The values in
u may highlight some predicate variables and play down the
others. This way, we identify salient relations for a decision,
since a predicate is an abstracted representation of a relation.
Even in extreme cases that all predicates have satisfied/un-
satisfied groundings, probably only a subset of them are rec-
ognized to be useful. Then the utility weights for those pred-
icates would probably have larger absolute values.

Self-explaining can be seen as finding a set u of util-
ity weights. The number of output utility weights per step
should match the number of grounded predicate values. The
neural network architecture of SE-Net is flexible and should
match the state-space. In some of our experiments, our state-
space consists of features like object poses. Then SE-Net
could be implemented by using a multilayer perceptron.

By taking the dot-product of u and grounded predicate
values, we can obtain a scaler value hθ(s) that we would use
later:

hθ(s, u) =

k−1∑
i=0

ui · P (s)i (4)

where P (s) denotes the grounded predicate values extracted
from state s, and k denotes the number of predicates. We
explain how we obtain the function P in the Sec. 2 of linked
supplemental manuscript (footnote 1).

Recall that GAN-GCL (Finn et al. 2016) and SA-GAN-
GCL (Fu, Luo, and Levine 2017) train IRL and RL models
together as a GAN (a coupling of discriminator and genera-
tor). Traditionally, the IRL model is trained by differentiat-
ing demonstration and sampled trajectories. The IRL model



(discriminator) also provides rewards for training the RL-
Agent to imitate the demonstrations. However, solving a
SERLfD problem is closer to solving an RLfD problem as in
(Vecerik et al. 2017; Hester et al. 2017; Salimans and Chen
2018): They use demonstrations to initialize a replay buffer
and bootstrap the learning of maximizing task rewards.

Now an important question is how can we integrate the
learning of the SE-Net in a discriminator and an RL-Agent.
Inspired by the difference between RLfD that requires task
rewards and GAN-GCL based Imitation Learning that only
needs a discriminator (discussed above Eq. 2), we decide to
use the predicted utility weights u to shape the task rewards.
The value hθ(s) in Eq. 4 is essentially a reward shaping term
that rely on both SE-Net and background knowledge (pred-
icates and P (s)). Then we can compute the prediction of
shaped rewards r̂ as:

r̂θ(st, ut, at, st+1, ut+1, r) =
r(st, at) + hθ(st+1, ut+1)− hθ(st, ut) (5)

where r̂θ() models the prediction of shaped rewards
r̂(st, at), and hθ(s) is computed in Eq. 4. r(st, at) is the
task rewards provided by an RL environment. The formula-
tion of Eq. 5 is based on Eq. 1 and shares similarities with the
prediction of shaped rewards in work (Fu, Luo, and Levine
2017). However, different from (Fu, Luo, and Levine 2017),
we include task reward r to train the agent to accomplish the
task instead of merely imitating. In the rest of this paper, we
shorten the r̂θ() with long lists of inputs to r̂θ(s, u, a, r).

Since our self-explanation u only “augments” the task re-
wards, our discriminator is trained to distinguish between
successful and unsuccessful trajectories. In the traditional
GAN-IRL works, the task reward is missing. All demonstra-
tions are labeled as good and all sampled trajectories are la-
beled as bad. But incorporating task rewards can better mo-
tivate Self-Explainer to learn to discriminatively recognize
which predicates are more useful for solving a task. Sam-
pled trajectories that can accomplish a task, in our problem,
should be treated the same as demonstration trajectories. Re-
member in Fig. 1.3, we store a sampled trajectory into either
Dgood or Dbad depending on if it accomplishes a task. The
discriminator loss LSE for training the SE-Net can be for-
mulated as:

LSE = E(s,a)∼Dgood
[−logD(r̂θ(s, u, a, r))] +

E(s,a)∼Dbad
[−log(1−D(r̂θ(s, u, a, r)))]

where u = SE−Net(s), the discriminator function D() is
formulated in Eq. 3, and r̂θ(s, u, a, r) in Eq. 5.

4.3 Improving RL-Agent (Generator) with
Self-Explanation

The yellow area in Fig. 1.3 depicts how we train the RL-
Agent with the help of predicted self-explanations. Note
that the SE-Net learns a complex non-linear function to “ex-
plain” a state. SE-Nets also provide more detailed guidance
(predicate utilities) rather than merely a numerical reward
prediction. In our work, we propose two ways for an RL-
Agent to take advantage of SE-Nets. One way is to augment
RL states by concatenating them with grounded predicate
values and predicted utility weights (self-explanation): 〈s〉
becomes 〈s, p, u〉. Then policy network in RL-Agents be-
comes: a ∼ πθ(s, p, u). Another way is to estimate a shaped

reward r̂θ(s, u, a, r) by using Eq. 4 and 5. The former pro-
vides more detailed guidance whereas the (shaped) rewards
are more direct learning signals for RL-Agents. Intuitively, a
good explanation provides better guidance for the RL-Agent
to sample a trajectory that in turn makes the discriminator
harder to distinguish, which adapts the SE-Net further.

The SERLfD learning is summarized in Algorithm. 1.

5 EVALUATION
Since self-explanations should play a general role in improv-
ing an RL-Agent that is trained with ambiguous demonstra-
tions, we evaluate our SERLfD framework in multiple do-
mains and use different candidate deep RL models as the
RL-Agent. We evaluate the RL learning performance in this
section and the predicted self-explanations in our supple-
mental video (footnote 1). We design our evaluation to an-
swer the following questions: 1) Can SERLfD outperform
RLfD? 2) Which of the two ways of using self-explanation
to guide an RL-Agent (state or reward augmentation) is
more helpful? 3) What could happen if the self-explanation
is used to define the entire reward rather than just the re-
ward shaping? 4) Do self-explanations play a general role in
supporting an RL-Agent to learn from ambiguous demon-
strations or self-explanations are only effective for certain
of the RL models? 5) Since our SERLfD combines the bene-
fits of RLfD and GAN-IRL, does our SERLfD outperform a
state-of-the-art GAN-IRL as an Imitation Learning method?
6) Does SERLfD help in both continuous and discrete do-
mains?

To answer 1, we compare the performance of an RLfD
model and the same one supported by SE-Net. To answer
2, we do extensive studies of how RL agents can use self-
explanations by removing the predicate utility weights from
the input of an RL-Agent (RLfD+SE+nu), or by removing
the reward shaping terms (RLfD+SE+nrs). To answer 3, we
remove task rewards and only use the dot-product of predi-
cate utility weights and predicate values as rewards to train
RL agents (RLfD+SE+ntr). To answer 4, we investigate a
diverse set of RL-Agents. To answer 5, we compare SERLfD
with the SA-GAN-GCL (for Imitation Learning) proposed
in (Fu, Luo, and Levine 2017). To answer 6, we evaluate our
models in three continuous robotic control domains and one
discrete Pacman domain.

5.1 Experiments in Continuous Domain
We start by evaluating SERLfD in a Robot-Push domain (as
described in Fig. 1) that a continuous control model would
need to be learned. We used a Fetch Mobile Manipulator
(Wise et al. 2016) that has a 7-DoF arm in PyBullet simula-
tor (Coumans and Bai 2016). We also fixed its mobile base
in experiments. In this Robot-Push domain, there are two
target regions indexed by L1 and L2. Note that this index-
ing is static. By saying a “region”, we mean a square that
each side is approximately 0.1m. The region L1 and L2 are
assigned with either blue-yellow or yellow-blue colors. The
predicate variables are: {is block pushed, is ring pushed,
block at yellow, block at blue, ring at yellow, ring at blue,
block at L1, block at L2, ring at L1, ring at L2}. The task



Algorithm 1: The SERLfD Learning Algorithm
INPUT: A dataset of human demonstrations, an environment with reward function r, state space S, action space A, and
all hyper-parameters

1: Initialize the weights of an RL-Agent and a Self-Explainer
2: Initialize buffers Dgood and Dbad for training the Self-Explainer and DRL for RL from Demonstrations as in (Hester et al.

2017; Vecerik et al. 2017)
3: Store expert experiences into Dgood and DRL. Pretrain the RL-Agent with experiences sampled from DRL
4: Sample K trajectories with a random policy and add them to DRL. Also add successful and unsuccessful trajectories to
Dgood and Dbad respectively.

5: for episode = 1; episode ≤ N ; episode+ + do
6: Sample experiences (including grounded predicate values) from Dgood and Dbad . Train Self-Explainer
7: Compute utility weights u and shaped reward prediction r̂θ(st, ut, at, st+1, ut+1, r) by using SE-Net, Eqs. 4 and 5
8: Update the SE-Net via binary cross entropy loss LSE to distinguish successful experiences from unsuccessful experi-

ences
9: Sample experiences with grounded predicate values from DRL . Train RL-Agent

10: Run SE-Net on sampled states to obtain utility weights u
11: Augment input states with grounded predicate values and utility weight values
12: Augment rewards with predicted shaped reward by using Eq. 5
13: Update RL-Agent with the augmented experiences
14: Use RL-Agent to sample a new trajectory and add it to DRL. If the trajectory is successful, it would also be added to
Dgood. Otherwise, it would also be added to Dbad . Sample a new trajectory

15: end for
16: return a trained RL-Agent and SE-Net
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Figure 2: 2.1. Learning curves of training the baseline RLfD agents (TD3fD/SACfD), RLfD with SE-Nets (RLfD+SE), the
extensive studies of how RLfD can use self-explanations (RLfD+SE+nu and RLfD+SE+nrs), using the self-explanation to
form the entire rewards for RL-Agents (RLfD+SE+ntr), and an Imitation Learning agent built by using RL in the original SA-
GAN-GCL framework (Fu, Luo, and Levine 2017); and 2.2. The Pacman domain and the learning curves with the RL-Agent
SQLfD. For each curve, we run three times of each algorithm and report the mean and standard-deviation, which are plotted in
the bold and lighter color region respectively. y-axis values are scores that each is measured as an average over 100 episodes.
x-axis values are episodes.

is to push the block and ring into yellow and blue regions
respectively, no matter which is L1 or L2. Our design of
state-space follows the FetchPush-v0 environment made by
OpenAI-Gym (OpenAI). The state-space consists of the po-
sitions and orientations of the objects in domain w.r.t the
world frame. Such objects include the end-effector, ring,

block, regions in blue and yellow colors, and regions L1 and
L2. The action space is defined as a 4-tuple: [translation x,
translation y, translation z, yaw angle] of the end-effector
w.r.t world frame. Once the block is pushed to the yellow re-
gion and ring to the blue region, the robot finishes a task. The
task reward function is sparse: In most situations, r(s, a) is



zero; If robot pushes an object towards its target location to
be δd closer, it receives a reward of 100 ∗ δd; If either ring
or block is pushed into its target region, the robot receives
a reward of 25; If both ring and block are pushed into their
target regions, the robot receives a reward of 50.

We also designed two simplified versions of the
aforementioned Robot-Push domain, named Robot-
Push-Simple and Robot-Push-Simple-2. In the
Robot-Push-Simple domain, the predicate variables
are: {is block pushed, is ring pushed, block at yellow,
block at blue, ring at yellow, ring at blue}. The region L1
and L2 are always in blue and yellow. Other details are the
same as the Robot-Push domain. The Robot-Push-Simple-2
domain is identical to the Robot-Push-Simple domain
except for that it has a larger predicate set that is the same
as the Robot-Push domain.

We use two state-of-the-art RLfD baselines for con-
tinuous control tasks: Twin-Delayed DDPG (Fujimoto,
Van Hoof, and Meger 2018) from Demonstrations (TD3fD),
and Soft-Actor Critic (Haarnoja et al. 2018) from Demon-
strations (SACfD). To collect demonstrations, we use a key-
board to input control commands. We collected 8 trajecto-
ries (averagely 17 steps each) for the Robot-Push-Simple
and Robot-Push-Simple-2 domain and 15 trajectories (av-
eragely 19 steps each) for the Robot-Push domain.

Robot-Push-Simple, Robot-Push-Simple-2, and Robot-
Push The results are reported in Fig. 2.1. We extensively
study what is the best way for an RL-Agent to use self-
explanations by introducing the models RLfD+SE+nrs and
RLfD+SE+nu along with our main model RLfD+SE. Please
note that all of the three models that use our self-explainer –
either for reward shaping, state augmentation, or both – are
our models that require a SERLfD framework and SE-Net.
The results present multiple interesting findings. First, the
RL-Agents with SE-Nets generally can be trained more sta-
bly and achieve higher scores within a shorter time. One ex-
ception is when we use SACfD as the baseline RL-Agent in
Robot-Push-Simple and Robot-Push-Simple-2. This is be-
cause the two domains have a lower degree of ambiguity.
The entropy-driven exploration in SACfD can find the op-
timal policy without the help of self-explanations. Second,
the results show that using self-explanations to augment
states is better than constructing shaped rewards with self-
explanations. The reason could be 1) the state augmenta-
tion provides detailed information of self-explanation to RL-
Agents, and 2) due to RL-Agents’ explorations, the reward
shaping that contains self-explanations would not be fully
used at the beginning stage of training. We also evaluate an
incorrect way of using self-explanation to form the entire
rewards (RLfD+SE+ntr). Theoretically, RLfD assumes the
task/extrinsic reward is available. Demonstrations are used
to guide RL agents to find a policy that maximizes the accu-
mulative extrinsic reward faster. Using the self-explanation
to form the entire reward breaks this assumption of RLfD.
Third, the domain Robot-Push is harder than Robot-Push-
Simple-2 but they have the same predicates. Our results for
the two domains show that the RLfD agents with SE-Nets
can maintain good performance even for harder tasks.

Robot-Remove-and-Push Based on the aforementioned
results, we evaluate some interesting models in this more
complex robot domain. There are two target regions indexed
with L1 and L2. The region L1 and L2 are assigned with ei-
ther blue-yellow or yellow-blue colors. L1 and L2 are fixed
whereas blue and yellow are exchangeable. In each episode,
either a block or a cylinder would show up. Both have a
black cover at the top. If their initial poses are on the left
side of the table, the robot needs to push them to their target
regions with the black cover removed. The target regions
for the block and cylinder are blue and yellow regions re-
spectively. Robots only get a reward of +50 when they ac-
complish the task. This domain supports a more complex
task of 20 predicates (Sec. IV in the supplemental material
in footnote 1). We collected 16 demonstrations (averagely
5 steps each). We use TD3fD as a representative of RLfD
models. We report the results in the last column of Fig. 2.1
which shows clear benefits from learning self-explainers.

5.2 Experiments in Discrete Domain
We report our results in a discrete Pacman Domain (Fig.
2.2) to demonstrate if self-explanation is helpful with dis-
crete state and action spaces. After taking the power pellet,
the Pacman should try to eat ghosts within a fixed amount of
time. Once the Pacman eats all of the randomly-wandering
ghosts it completes the task. Then it gets a reward of 1 and
the current episode ends, otherwise, the reward is 0. Two
predicate variables, {ghost nearby, eat capsule}, are pro-
vided to describe whether the ghost is close to the Pacman
and whether the Pacman has eaten a pellet. The ambigu-
ity in this domain lies in the proper time to eat a pellet.
In the demonstrations (e.g. the red trajectory in Fig. 2.2),
the agent rushed to eat the pellet because the ghost was co-
incidentally nearby. But normally, the agent should wait to
eat the pellet until the ghost approaches. Our RL-Agent is
Soft Q-Learning (Haarnoja et al. 2017) from Demonstration
(SQLfD). We collected 5 demonstrations (averagely 18 steps
each). In our training, each episode has at most 2000 steps.
From the results, we can conclude that the RL-Agents with
SE-Nets perform better.

6 CONCLUSION
In this work, we propose the Self-Explaination for
Reinforcement-Learning from Demonstration (SERLfD)
framework for allowing RLfD agents to efficiently use even
ambiguous demonstrations by doing self-explanations. Our
extensive evaluation shows appealing benefits of training
RLfD from learning self-explanations in one discrete Pac-
man and four challenging robotics domains. The experimen-
tal advantage also suggests that our SERLfD could lead to
compelling practical applications since ambiguous demon-
strations could frequently happen when robots cohabitate
with non-practitioner humans in real-worlds. In this work,
we open the direction of using self-explanation to help RLfD
learning. We believe there are extensive benefits of learn-
ing self-explanations for solving other robot learning prob-
lems, which could be investigated in future works. Future
extensions may also consider improving the self-explanation
mechanism that works under more challenging settings.
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