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Abstract

Visualizing optimization landscapes has resulted in many
fundamental insights in numeric optimization, specifically re-
garding failure modes of optimizations. However, visualiza-
tions of the surface of expected reward over policy parameters
that reinforcement learning optimizes (the “reward surface”)
have only ever been generated to study specific questions with
limited scope. This work presents reward surface and related
visualizations of 17 of the most widely used reinforcement
learning environments for the first time. Through this, we
show a new result about reward surfaces – that the reward
surfaces of environments with sparse rewards are flat and
noisy – and provide confirmation for the first time that many
popular reinforcement learning environments have “cliffs”
in the reward surfaces, a suspected problem that drove the
past research on trust-region policy gradient methods. These
plots allow concrete visualizations of specific failure modes
of reinforcement learning. We additionally introduce a highly
extensible library that allows researchers to easily generate
these visualizations in the future. 1

Introduction
Reinforcement learning attempts to optimize the expected
return over policy network parameters. Understanding this
optimization surface, and how reinforcement learning algo-
rithms behave on it is critical to understanding the successes
and failures of deep reinforcement learning. Policy gradient
methods attempt to optimize policies by approximating the
gradient of this function. This means that known problems
in non-convex optimization and known benefits of gradient
descent in deep learning apply here.

A “reward surface” is the high dimensional surface of the
reinforcement learning objective (the expected reward when
following a given policy in an environment) over the pol-
icy network parameter space. These were first visualized by
(Ilyas et al. 2018) to study the quality of policy gradient
estimates. Li et al. (2017) pioneered filter-normalization, a
method of effectively visualizing low dimensional surfaces
of neural network loss functions.

*These authors contributed equally.
1A longer and more complete working version of this prelimi-

nary workshop paper is available upon request to rsulli@umd.edu.
We expect to have a public draft shortly.

Our work utilizes filter-normalization to visualize reward
surfaces for a set of 17 reinforcement learning environments.
To the best of our knowledge, this is the first time visualiza-
tions of these reward surfaces have been generated for large,
diverse sets of environments, and our plots notably show that
the reward surfaces of environments with sparse rewards are
extremely flat and noisy. While this is an intuitive result, it
has not been previously demonstrated and provides guidance
on the scope of possible solutions to the problem of sparse
rewards. We additionally identify several interesting aspects
of these reward surfaces and what they reflect about the en-
vironments from the perspective of learning algorithms.

We additionally conduct a series of novel visualizations of
the reward surface, finding evidence of steep “cliffs” in the
reward surface plotted along the gradient direction of nu-
merous environments. The assumption that these cliffs pose
a challenge to reinforcement learning was the basis of the
trust-region based family of policy gradient methods (no-
tably TRPO (Schulman et al. 2015) and PPO (Schulman
et al. 2017)), and our plots offer conclusive visual evidence
that these cliff exist, as well as a method to study them fur-
ther.

To encourage future research in this direction, we release
a comprehensive, modular, and easy to use library for re-
searchers to plot these reward surfaces and better understand
their role during optimization.

Background and Related Work
Neural network visualization
A neural network objective is a high dimensional function
f(θ) which takes in all of the parameters in the neural net-
work and outputs a scalar. Unfortunately, doing standard
functional analysis on this high dimensional space with very
few theoretical guarantees is infeasible. However, we can
explore specific directions in this high-dimensional space to
gain some insight into the objective function’s properties. In
particular, we wish to explore the domain of this function in
two dimensions so that we can construct a 3d visualization
that is human interpretable.

Reward surfaces
The idea of a “reward surface” is the empirical expected re-
turn over a set of network parameters. The expected empiri-



cal return is J(θ) = Eτ∼πθ
R(τ) where R(τ) =

∑n
t=0 γ

trt.
Reward surfaces were first visualized by Ilyas et al. (2018)

to characterize problems with policy gradient estimates. The
authors plotted a policy gradient estimate vs a random direc-
tion, showing via visually striking examples that low sample
estimates of the policy gradient rarely guide the policy in a
better direction than a random direction.

Later, Ota, Jha, and Kanezaki (2021) used the method
from Li et al. (2017) directly to compare shallow neural net-
work optimization surfaces to deep neural networks, show-
ing that deep networks perform poorly because their loss
surface has much more complex curvature. They used this
visual insight to develop methods that can train deeper net-
works for reinforcement learning tasks. Bekci and Gümüş
(2020) visualize the loss landscapes of actor-critic learning
methods to see the effects of action smoothing and policy
stochasticity for a specific inventory control task.

Sparse rewards
An environment with sparse rewards is one that rarely emits
rewards, usually only when an agent transitions into a se-
mantically defined “goal state” (e.g. “the door is opened” or
“the opponent is dead”). Reward sparsity is given mathemat-
ical formalism by Riedmiller et al. (2018), and Atari envi-
ronments are famously classified into a taxonomy (which we
later use) of sparse or non-sparse rewards by Bellemare et al.
(2016). This sparse reward structure is hard to learn because
there are no shaping rewards leading up to the rewards from
goal states, which makes policies that reach goal states dif-
ficult to discover. Even after a good trajectory is discovered,
learning can still be difficult because sparsity exacerbates
the credit assignment problem. This refers to the challenge
of determining which specific actions were responsible for
causing certain rewards in a given episode, and less frequent
rewards make this attribution more challenging.

Visualizing a Diverse Set of Reward Surfaces
Methodology
A reward surface is a function from policy network parame-
ters θ to mean episodic returns. Since the function domain is
so large and complex, we focus our analysis around points
in the policy space visited during training. Given training
checkpoint θ, we are interested in understanding the local
surface Returns(θ + d) for small perturbations d.

A key challenge in this work is to choose perturbations d
that give an informative view of the actual local behavior of
the neural network. For example, uniform random perturba-
tions are known to be misleading in neural network analysis,
because neural networks with ReLU activations have scale
invariant weights (Li et al. 2017). To mitigate this problem,
we use filter-normalized random directions (Li et al. 2017).
As in that work, we view the policy neural network as a vec-
tor θ indexed by layer i and filter (not filter weight) j.2 Then,

2Note that this method also works for fully connected layers,
which are equivalent to a convolutional layer with a 1x1 output
feature map.

we sample a random Gaussian direction d, and scale each fil-
ter to match the magnitude of the neural network parameters
in that filter, by applying the following formula.

di,j =
di,j

∥di,j∥
∥θi,j∥

To visualize this local space in 2 dimensions we plot re-
ward against these filter normalized directions. The x and y
axis are independently sampled filter normalized directions,
and the surface is projected onto this plane. Note that since
the dimension of the space is large, these directions are or-
thogonal with high probability. The plots are additionally
scaled manually to highlight features of interest, so note the
marks on the axes which indicate those manual scales.

A reward surface is specific to the chosen learning al-
gorithm and hyperparameters, so for these experiments we
chose to plot the reward surface of PPO agents using the
tuned hyperparameters found in RL Zoo 3 (Raffin 2020).
To understand what challenges RL algorithms face towards
the end of training after sufficient exploration has occurred,
we chose the best checkpoint during training, evaluated on
25 episodes, with a preference for later checkpoints when
evaluations showed equal rewards. The best checkpoint was
typically found during the last 10% of training.

Environment Selection
In exploring these reward surfaces, we sought to cover many
widely used benchmark environments. As such we gener-
ated plots for all “classic control“ environments in Gym
(Brockman et al. 2016) and for popular Atari environments,
but because of the large computational expense of generat-
ing reward surfaces we chose 12 environments instead of all
of the Atari environments in Gym.

In the spirit of exploring very diverse reward schemes, we
specifically picked six sparse reward environments (Mon-
tezuma’s Revenge, Pitfall!, Solaris, Private Eye, Freeway,
Venture), three dense reward environments (Bank Heist,
Q*Bert, Ms. Pac-Man), and three popular easy exploration
environments (Breakout, Pong and Space Invaders), per the
standard taxonomy by Bellemare et al. (2016).

Plots
A sampling of the visualizations of the reward surfaces on
the aforementioned environments can be seen in Figure 1,
the classic control plots are shown in Figure 4, and the Atari
plots can be found in Figure 5. We created plots for envi-
ronments with extremely large rewards in log scale to make
them easier to visually interpret.

Plot Variance and Repeatability
To demonstrate the consistency of these experiments across
multiple random seeds, we repeated our reward surface plots
5 times for Breakout, Freeway, and Acrobot. For each trial,
we trained and evaluated a new agent on a new seed. We can
see from the plots in Figure 6 that the reward surfaces are
extremely visually similar in each case, showing that train-
ing tends to converge to visually similar parts of the reward
landscape, and that the characteristics of these plots are con-
sistent across multiple seeds. Each point in these plots is an



Figure 1: Reward surfaces of assorted Gym environments

estimate of the expected reward for the parameters at that
point. We evaluated for at least 200,000 time steps at each
point to ensure that the standard error for these estimates is
small.

Findings in Plots
Flatness of Sparse Reward Environments The primary
finding in the plots is the result that the reward surfaces of
environments with sparse rewards are largely flat relative to
the scale of rewards in the environment.

This result intuitively should be the case – for most ac-
tions in environments with sparse rewards, no reward is is-
sued – however it is a previously undocumented visual phe-
nomenon. This flatness suggests limitations of learning these
environments, because a flat function cannot be iteratively
optimized. These plots make it clear that sparse reward envi-
ronments require better exploration methods than the simple
heuristics built into PPO.

Other Observations One interesting observation is that
the size of the maximizers present in the reward surfaces
roughly correlates with the difficulty of the environment.
Among the classic control environments, only Pendulum-v0
is considered unsolved on the OpenAI Gym Leaderboard,
and it is the only environment of the five that does not have
a local maximum spanning the entirety of the [-3, 3] range in
each random direction. That being said, as a relatively easy
Classic Control environment, we can see that its loss surface
is still fairly smooth. We see a similar trend in the Atari en-
vironments where the dense reward and human optimal en-
vironments have comparatively large maximums while the
sparse reward plots are spiky and have no clear, good maxi-
mizers. A metric based on this property could potentially be
used to gauge the difficulty of an RL environment.

The sparse reward Atari environments are particularly in-

teresting to examine. We see that Freeway’s plot has a large
canyon with a single smooth maximizer. Montezuma’s Re-
venge, Private Eye, and Solaris all appear extremely noisy.
The reward surface for Venture shows two neighboring max-
imizers, where the agent unfortunately converged to the
lesser of the two peaks. And as its name suggests, the re-
ward surface for Pitfall! is marred by several severe drops
in reward. These plots seem to highlight different failure
modes of sparse environments, either the surface is too flat,
too noisy, or too non-convex to easily optimize.

Exploring the Gradient Direction
To better understand the optimization characteristics of these
surfaces, we repeated these experiments using the gradient
direction. In many of these plots, we find evidence of “cliffs”
in the reward surface. These are directions in which rewards
improve up to a point a very small distance away, and then
sharply decreases past that point.

Gradient Directions
While filter normalized random directions provide a broad
sense of the local optimization landscape, and are useful for
analysis near the end of training, they are not necessarily
very informative about the course or direction of training, as
the directions sampled are likely orthogonal to the gradient
direction used during training. To better understand the op-
timization trajectory, we evaluate and visualize the gradient
direction against a filter normalized random direction.

One difficulty of plotting the gradient direction is that the
gradient magnitudes vary drastically for different environ-
ments at different points in training. Additionally, any max-
imum in a reward surface can be made to look like a sharp
cliff by using a large enough gradient scale, or like a large
plateau by using a smaller gradient scale. To provide a com-



Figure 2: Reward surfaces of the Hard Exploration Atari environments

parable view of the gradient direction’s sharpness, we nor-
malize these directions instead of using manual scaling. This
provides a less direct visualization of the individual learn-
ing dynamics of each environment, but allows for more fair
comparisons between environments, and an unbiased visu-
alization of sharpness in the plots.

Gradient Line Plots

We ran a second set of experiments to explore gradient di-
rections across training, plotting the expected reward along
the normalized gradient direction for evenly spaced check-
points during a training run.

Methodology In order to understand the influence of the
loss surface over the whole course of training, we plot a 1-
dimensional projection of the rewards along the gradient di-
rection vs. a series of checkpoints taken at uniform training
step increments. Since the training checkpoints are relatively
far apart from one another, the plot is somewhat discontin-
uous. However, since these checkpoints were not chosen by
their performance, they should be representative of all points
visited during training.

Observations We find that many of the same observations
here as we do in the original reward surfaces. The gradient
directions for dense reward and easy environments tend to
point toward better rewards, and sparse reward environments
have much noisier trajectories along the gradient directions.
However, we also note some unique properties of the gra-
dient direction. In some plots, for example in Pong, we see
“cliffs” in the reward surface where the reward briefly in-
creases, then sharply decreases. We find that these cliffs oc-
cur occasionally in almost every environment.

Gradient Heat Maps

To provide a more complete view of these cliffs, we pro-
duced heat map plots of the gradient direction against a ran-
dom filter normalized direction.

Methodology Our method in this section is similar to Ilyas
et al. (2018), except our plots have a much larger scale to vi-
sualize the long term dynamics of training, and we use filter
normalization instead of uniform random directions. We first
use a high-sample estimate of the gradient taken over 1 mil-
lion timesteps, and plot steps in the gradient direction along
the x axis. We then choose a filter normalized random direc-
tion to plot along the y axis. For environments where cliffs
existed, we specifically chose to investigate those cliff-like
checkpoints.

Observations We can see in these heat maps that the gra-
dient direction has much sharper and more severe transi-
tions in reward than the random normalized directions. This
seems to show that to find better rewards, the agent must at-
tempt to stay close to the edge of these cliffs without falling
into a much worse parameter space.

Implications

The cliffs that we investigate in these plots may provide em-
pirical evidence for why trust region and gradient clipping
methods perform so well. The intuition that these cliffs exist
was one of the motivations for developing more stable policy
gradient methods like TRPO. We plan to perform further ex-
periments to confirm our hypothesis that vanilla policy gra-
dient methods fall off of these cliffs into poor regions of the
parameter space, while TRPO and PPO avoid them.



Figure 3: Line plots and heat maps of Pong, Freeway, and Solaris. Heat maps for Pong and Freeway were chosen specifically
because they exhibit cliff-like behavior, while the checkpoint for Solaris is abritrary.

Library
To produce this work and encourage future research using
these visualizations, we developed an extensive software li-
brary for plotting the reward surfaces of reinforcement learn-
ing agents. The library includes code for training agents us-
ing all of the options available in Stable Baselines 3 (Raf-
fin et al. 2019) and hyperparameters from RL Zoo 3 (Raffin
2020). We provide algorithms for estimating the true policy
gradient and the hessian of policy networks along with code
for evaluating the rewards or discounted returns of trained
agents. The entire code base supports the use of arbitrary
directions for investigation, and specifically provides tools
for using filter normalized and gradient directions. Finally,
we include routines for plotting 3d reward surfaces, line
plots, heat maps, and gifs of reward surfaces during train-
ing. The library is well organized and the experiments are
documented to assist in future research. The library can be
found at https://github.com/RyanNavillus/reward-surfaces.

Discussion
Our work primarily demonstrates the efficacy and reliability
of using reward surfaces plotted against filter normalized di-
rections to study the reward surfaces of RL agents. We hope
that this work and our new library inspires future research
into reward landscapes, so we propose a few interesting re-
search directions. The paper that originally proposed filter
normalization used it to study the effects of neural network
architecture on the loss landscapes of image classification
networks. Unlike most areas of deep learning, reinforcement

learning has mostly failed to take advantage of deeper neu-
ral networks (Ota, Jha, and Kanezaki 2021). Our library and
techniques could be used to visually study why larger net-
works might lead to instability during training. Similarly,
our paper confirms failure modes of sparse reward environ-
ments for the first time. Our library could be used to study
the effects of bonus-based exploration or intrinsic motiva-
tion on reward surfaces. Finally, this library provides inter-
esting functionality such as hessian estimation, which allows
us to study the curvature of reward surfaces, or reward sur-
face gifs that can be used to investigate the nonstationarity of
single or multi agent RL environments throughout training.

Conclusion

We generate numerous visualizations of the reward surfaces
of most of the widely used reinforcement learning envi-
ronments by researchers. In these plots, we clearly show
“cliffs” in the reward surfaces for the first time, show var-
ious environment-specific behaviors of interest, show that
the reward surfaces of sparse-reward environments are more
flat than dense-reward environments, and introduce a library
for easily generating more of these visualizations in the fu-
ture. We hope that this steers researchers towards a better
understanding of the challenges of reinforcement learning,
that visual evidence of the cliffs that motivate trust region
methods enables further advances in policy gradient meth-
ods, and that our library is used as an exploratory tool to
study properties of individual environments.

https://github.com/RyanNavillus/reward-surfaces


References
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Figure 4: Reward surfaces for the 5 Classic Control environments in Gym.

Figure 5: Reward surfaces for 12 Atari environments in Gym.



Figure 6: 5 runs of Acrobot, Breakout, and Freeway using different seeds. The plots of most runs are extremely visually similar.
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