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Abstract

Value iteration is a well-known method of solving Markov
Decision Processes (MDPs) that is simple to implement and
boasts strong theoretical convergence guarantees. However,
the computational cost of value iteration quickly becomes in-
feasible as the size of the state space increases. Various meth-
ods have been proposed to overcome this issue for value it-
eration in large state and action space MDPs, often at the
price, however, of generalizability and algorithmic simplic-
ity. In this paper, we propose an intuitive algorithm for solv-
ing MDPs that reduces the cost of value iteration updates by
dynamically grouping together states with similar cost-to-go
values. We also prove that our algorithm converges almost
surely to within 2¢/(1 — ~y) of the true optimal value in the
£°° norm, where + is the discount factor and aggregated states
differ by at most €. Numerical experiments on a variety of
simulated environments confirm the robustness of our algo-
rithm and its ability to solve MDPs with much cheaper up-
dates especially as the scale of the MDP problem increases.

Introduction

State aggregation is a long-standard approach to reduce
the complexity of large-scale Markov decision processes
(MDPs). The main idea of state aggregation is to define the
similarity between states, and work with a system of reduced
complexity size by grouping similar states into aggregate, or
“mega-", states. Although there has been a variety of results
on the performance of the policy using state aggregation
(Li, Walsh, and Littman 2006; Van Roy 2006; Abel, Her-
shkowitz, and Littman 2016), a common assumption is that
states are aggregated according to the similarity of their opti-
mal cost-to-go values or state-action rewards (also konwn as
Q-value). Such a scheme, which we term pre-specified ag-
gregation, is generally infeasible unless the MDP is already
solved.

This paper provides an online algorithm that learns to ag-
gregate states effectively, while using the state-aggregation
to facilitate the process of solving MDPs. We propose a
simple and efficient state aggregation algorithm for calcu-
lating the optimal value and policy of an infinite-horizon
discounted MDP that can be applied in planning problems
(Baras and Borkar 2000) and generative MDP problems
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(Sidford et al. 2018a). The algorithm alternates between two
distinct phases. During the first phase (we refer to as “global
updates”), the algorithm updates the cost-to-go values for all
states, trading off some efficiency to more accurately guide
the cost-to-go values in the right direction; in the second
phase (we refer to as “aggregate updates”), the algorithm
groups together states with similar cost-to-go values based
on the last sequence of global updates, and it then efficiently
updates the states in each mega-state in tandem as it opti-
mizes over the reduced space of aggregate states.

A few online algorithms that learn how to effectively ag-
gregate states have been proposed (Ortner 2013; Duan, Ke,
and Wang 2018; Sinclair, Banerjee, and Yu 2019). Com-
pared to prior works on state aggregation that use informa-
tion on the state-action value (Q)-value) (Sinclair, Banerjee,
and Yu 2019), transition density (Ortner 2013), and methods
such as upper confidence intervals, our method is compact
such that it does not require strong assumptions or extra in-
formation, and only performs updates in a manner similar
to standard value iteration. Moreover, because our algorithm
is value-iteration based, it features robustness and general-
ity to a wide range of MDP problems and generative RL
(Azar, Munos, and Kappen 2013). To implement our algo-
rithm, the inputs needed for state aggregation are only the
current cost-to-go values and the parameter €, which bounds
the difference between (current) cost to go values of states
within a given mega-state.

Contribution

Our contribution is a feasible online algorithm for learning
aggregate states and cost-to-go values that requires no ex-
tra information beyond that required for standard value it-
eration. We showcase in our experimental results that our
method provides significantly faster convergence than stan-
dard value iteration especially for problems with larger state
and action spaces. We also provide theoretical guarantees
for the convergence, accuracy, and convergence rate of our
algorithm.

Our work provides insights to the current literature in the
following ways. Compared to the literature in pre-specified
aggregation (Li, Walsh, and Littman 2006; Van Roy 2006;
Abel, Hershkowitz, and Littman 2016), where the authors
develop convergence properties for different function ap-
proximators, we also provide our convergence results, while



proposing online algorithm that performs state-aggregation.
In the literature of online aggregation algorithms (Bertsekas,
Castanon et al. 1988; Ortner 2013; Duan, Ke, and Wang
2018; Sinclair, Banerjee, and Yu 2019), our method features
a more compact approach that requires less information on
inputs and assumptions. The simplicity and robustness of
our novel state aggregation algorithm demonstrates its util-
ity and general applicability in comparison to existing ap-
proaches for solving large MDPs.

Related literature

When a pre-spcified aggregation is given, Tsitsiklis and
Van Roy (1996) and Van Roy (2006) give performance
bounds on the aggregated system and propose variants of
value iteration. There are also a variety of ways to per-
form state aggregation based on different criteria. Ferns,
Panangaden, and Precup (2012) and Dean, Givan, and Leach
(1997) analyze partitioning the state space by grouping
states whose transition model and reward function are close.
McCallum (1997) proposes aggregate states that have the
same optimal action and similar J-values for these actions.
Jong and Stone (2005) develops aggregation techniques such
that states are aggregated if they have the same optimal ac-
tion. We refer the readers to Li, Walsh, and Littman (2006),
Abel, Hershkowitz, and Littman (2016), Abel et al. (2020)
for a more comprehensive survey on this topic.

Dynamic learning of the aggregate states has also been
studied more generally in MDP and reinforcement learning
(RL) settings. Hostetler, Fern, and Dietterich (2014) pro-
poses a class of ()-value-based state aggregations and ap-
plies them to Monte Carlo tree search. Slivkins (2011) uses
data-driven discretization to adaptively discretize state and
action space in a contextual bandit setting. Ortner (2013)
develops an algorithm for learning state aggregation in an
online setting by leveraging confidence intervals. Sinclair,
Banerjee, and Yu (2019) designs a Q-learning algorithm
based on data-driven adaptive discretization of the state-
action space. For more state abstraction techniques see Baras
and Borkar (2000), Dean, Givan, and Leach (1997), Jiang,
Singh, and Lewis (2014), and Abel et al. (2019).

Our adaptive state-aggregated value iteration algorithm
is also related to the so-called aggregation-disaggregation
method used to accelerate the convergence of value itera-
tions (Bertsekas, Castanon et al. 1988; Schweitzer, Puter-
man, and Kindle 1985; Mendelssohn 1982; Bertsekas 2018)
in policy evaluation, i.e., to evaluate the value function of
a policy. Among those works, that of Bertsekas, Castanon
et al. (1988) is closest to our approach. Assuming the under-
lying Markov processes to be ergodic, the authors propose
to group states based on Bellman residuals in between runs
of value iteration. They also allow states to be aggregated or
disaggregated at every abstraction step. Our work is differ-
ent from Bertsekas, Castanon et al. (1988) such that in Bert-
sekas, Castanon et al. (1988) the convergence of the Bellman
residual based state-aggregation schemes is analytically in-
tractable, while our algorithm converges with less assump-
tions. Aside from state aggregation, a variety of other meth-
ods have been studied to accelerate value iteration. Herzberg
and Yechiali (1994) propose iterative algorithms based on a

one-step look-ahead approach. Shlakhter et al. (2010) com-
bine the so called “projective operator” with value iteration
and achieve better efficiency. Anderson (1965), Fang and
Saad (2009), and Zhang, O’Donoghue, and Boyd (2020) an-
alyze the Anderson mixing approach to speed up the conver-
gence of fixed-point problems.

Preliminaries
Markov decision process

We consider an infinite-horizon Markov Decision Process
M = (S, A, P,r,~,p), consisting of: a finite state space S;
a finite action space .4; the probability transition model P,
where P(s'|s,a) denotes the probability of transitioning to
state s’ conditioned on the state-action pair (s, a); the imme-
diate cost function r : S x A — R, which denotes the im-
mediate cost—or reward—obtained from a particular state-
action pair; the discount factor v € [0,1); and the initial
distribution over states in S, which we denote by p.

A policy m : & — A specifies the agent’s action based
on the current state, either deterministically or stochasti-
cally. A policy induces a distribution over the trajectories
T = (8¢, a¢,7)52, Where sg ~ p, and a; ~ m(-|s;) and
St+1 ™~ P("St7at) for ¢ > 0.

A value function V' : S — RISI assigns a value to each
state; as |S| < oo, V can also be represented by a finite-
length vector (V/(1),...,V(|S]))T € RISI. (In this paper, we
view all vector as vector functions mapping from the index
to the corresponding entry.) Moreover, each policy 7 is asso-
ciated with a value function V™ : § — R, which is defined
to be the discounted sum of future rewards starting at s and
with policy 7:

V7i(s):=E Zwtr(st,at)h,so =S
t=0

As noted above, we represent both the value function
corresponding to the policy 7 and the value vector
(V™(1),...,V™(|S|) T as V™.

For each state s € S and action a € A belonging to state
s, let Py, € RIS! denote the vector of transition probabil-
ities resulting from taking the action a in state s. We call a
policy 7 greedy with respect to a given value V' € RISI if

7(s) € argmin (r(s,a) + - PSTaV)) .
acA

We define T' : RISI — RIS to be the dynamic programming
operator such that (T'V')(s) = Ts(V') where

T,(V) = miﬂ (r(s,a) + - PIHV) .

(1S

The optimal value function V'* is the unique solution of
the equation V* = T'V*. A common approach to find V' * is
value iteration, which, given an initial guess Vj), generates a
sequence of value functions {V; }52, such that V;11 = T'V,.
The sequence {V;}£2, converges to V* as t goes to +00
(Bellman 1957).



State aggregation

The state space of MDPs can be very large. State aggrega-
tion divides the state space S into K subsets and views each
collection of states as a mega-state. Then, the value function
generated by the mega-states can be used to approximate the
optimal value V'*.

To represent a state aggregation, we define the matrix
& c RISIXK We set ¢i,; = 1if state 7 is in the j-th mega-
state, and let ¢; ; = 0 otherwise; i.e., column j of ® indi-
cates whether each state belongs to mega-state j. The state-
reduction matrix @ also induces a partition {S;}/, on S,
ie, S =UL, S and S;NS; = 0 fori # j. Denote by
W € RX the cost-to-go value function for the aggregated
state, and note that the current value of W induces a value
function V(W) € RIS on the original state space, where

V(s,W)=W{(j), forses.

Algorithm design

In this section, we first introduce a state aggregation algo-
rithm which assumes knowledge of the optimal value func-
tion. The algorithm is proposed in Tsitsiklis and Van Roy
(1996) which also provides the corresponding convergence
result. Based on existing theory, we design our adaptive al-
gorithm and discuss its convergence properties.

A pre-speficied aggregation algorithm

Given a pre-specified aggregation, we seek the value func-
tion W for the aggregated states such that

V(W) = V¥l = O(llell), M

where e = (e1,...,ex)" and e; = max,, s,es, |[V*(s1) —
V*(sq)| for j = 1, ..., K. Intuitively, Eq. (1) justifies our ap-
proach of aggregating states that have similar optimal cost-
to-go values. We then state the algorithm that will converge
to the correct cost-to-go values while satisfying Eq. (1).

Algorithm 1: Random Value Iteration with Aggregation

1: Input: P, r, v, ®, {a;}32,

2: Initialize Wy =0

3: fort =1,...,ndo

4. forj=1,..,K do

5: Sample state s uniformly from set S

6: Wir1(G) = (1 = a)Wi(j) + T,V (W)
7:  end for

8: end for _

9: Output: V,,

Algorithm 1 takes a similar form in Stochastic Approx-
imation (Robbins and Monro 1951; Wasan 2004), and will
converge almost surely to a unique cost-to-go value. Here
oy is the step size of the learning algorithm; by taking,
e.g., a; = 1, we recover the formula of value iteration.
The following convergence result is proved in Tsitsiklis and
Van Roy (1996).

Proposition 1 (Theorem 1, (Tsitsiklis and Van Roy 1996))
When > 2 oy = oo and Y ;o af < oo, {Wi}2, in
Line 6 of Algorithm 1 will converge almost surely to W*
entry-wise, where W* is the solution of

W (j) = |Sl| S TVW). @

SES;

Define m™™W" to be the greedy policy with respect to V(W*)
Then, we have, morevoer, that

VW) — Vel < 1€l
L= 3)
||V7TW* _ V*” < Q’YHGHOO
<A

W* . . . . .
where V™ is the value function associated with policy
w*
.

Proposition 1 states that if we are able to partition the state
space such that the maximum difference of the optimal value
function within each mega-state is small, the value function
produced by Algorithm 1 can approximate the optimal value

up to % and the policy associated with the approximated
value function will also be close to the optimal policy.

Value iteration with state aggregation

In order to generate an efficient approximation, Proposi-
tion 1 requires a pre-specified aggregation scheme such that
maxs, s,es; |V*(s1) — V*(s2)] is small for every i to guar-
antee the appropriate level of convergence for Algorithm 1.
Without knowing V'*, is it still possible to control the ap-
proximation error? In this section we answer in the affirma-
tive by introducing an adaptive state aggregation scheme that
learns the correct state aggregations online as it learns the
true cost-to-go values.

Given the current cost-to-go value vector V € RISI let
by = minges V (), let by = maxses V(). Group the cost-
to-go values among disjoint subintervals of the form [(by —
b1)/e]. Next, let A = (by — b1)/e, and let S; to be the j-
th mega-state, which contains all the states whose current
estimated cost-to-go value falls in the interval [b; + (j —
1)e, b1 + je). Grouping the states in this way reduces the
state size from |S]| states to at most [(by — b1)/e] mega-
states. See Algorithm 2 for further details.

Without the knowledge of V'* in advance, one must pe-
riodically perform value iteration on S to learn the correct
aggregation to help with adapting the aggregation scheme.
As a result, our algorithm alternates between two phases: in
the global update phase the algorithm performs value iter-
ation on S; in the aggregated update phase, the algorithm
starts to group together states with similar cost-to-go values
based on the result of the last global update, and then per-
forms aggregated updates as in Algorithm 1.

We denote by {A;}72, the intervals of iterations in which
the algorithm performs state-aggregated updates, and we de-
note by {B;}2, the intervals of iterations in which the algo-
rithm performs global update. As a consequence, b < a for




Algorithm 2: Value-based Aggregation

Algorithm 3: Value Iteration with Adaptive Aggregation

1: Input: £, V = (V(1),.... V(IS]) T

2: by = min V(s), bo = max V(s), A = (by — by)/e
s€|S| s€|S|

3: fori=1,...,[A] do

4 S = {s|V(s) € b1+ (i — e, by +ie)}, W(i) =
by + (@ - %)E

end for X

6: Delete the empty sets in {SZ}ZEE while keep the same
order, and define the modified partition to be {S;}X |,
where K is the cardinally of the modified set of mega-
states. Modify W and generate W € RX the similar
way.

7: Return {S;}} | and W.

o

any a € A; and b € B;; likewise, a < b for any a € A; and
be Bit1.

We then present our adaptive algorithm. For a pre-
speficied number of iterations n, the time horizon [1,n) is
divided into intervals of the form Bi, A, Bs, As,. ... Ev-
ery time the algorithm exits an interval of global updates B;,
it runs Algorithm 2 based on the current cost-to-go value
and the parameter ¢, using the output of Algorithm 2 for
the current state aggregation and cost-to-go values for A;.
Similarly, every time the algorithm exits an interval of state-
aggregated updates A;, it sets V/(W'), where W is the cur-
rent cost-to-go value for the aggregated space, as the initial
cost-to-go value for the subsequent interval of global itera-
tions.

Convergence

From Proposition 1, if we fix the state-aggregation parame-
ter €, even with perfect information, state aggregated value
iteration will generate an approximation of the cost-to-go
values with ¢°° error bounded by /(1 — «y). This bound is
sharp, as shown in (Tsitsiklis and Van Roy 1996). Such error
is negligible in the early phase of the algorithm, but the er-
ror would accumulate in the later phase of the algorithm and
prevent the algorithm from converging to the optimal value.
As aresult, it is not desirable for lim sup |A;| — 0o.!

We state asymptotic convergence results for Algorithm 3;
proofs can be found in the supplementary materials. For the
remainder of the paper, by a slight abuse of notation, we
denote by V; the current cost-to-go value at iteration ¢. More
specifically, if the current algorithm is in phase B;, V; is
the updated cost-to-go value for global value iteration. If the
algorithm is in phase 4;, V; represents V (Wp).

Theorem 1 [flimsup oy — 0, limsup,_, ., |A;| < oo and
liminf;, o | B;| > 0, we have

2e
1—7
'By setting ¢ adaptively, one might achieve better complexity

and error bound by setting lim sup |.A¢| — oo; however, adaptively
choosing ¢ lies beyond the scope of this work.

lim sup | V; = V*[|oo <
t—o0

L Input: P, 7, &, v, {a}§2, {A:i}32, {Bi}32y
2: Initialize Wy =0,V; =0,t,, =1
3: fort=1,...,ndo

4. ift € B; then
5: if t = min{/5;} then
6: W—l = V(Wt_l).
7: end if
8: forj=1,...,|S| do
9: Vi(j) = TjVi-1.
10: end for
11:  else
12: Find current i s.t. t € A;
13: if £ = min{A;} then
14: Define {S;}X , and W, to be the output of Al-
gorithm 2 with input e, V;_;.
15: end if
16: forj=1,..., K do
17: Sample state s uniformly from set .S;. Update
Wi(j) = (1 —ay, )Wie1(j) + oy [ TV (Wi_1)
4
18: end for
19: toag =tsq +1
20:  end if
21: end for

22: if n € B; then
23:  return V.
24: end if _

25: return V(W,,).

Notice that the result of Theorem 1 is consistent with
Proposition 1: due to state aggregation we suffer from the
same ﬁ for the error bound. However, our algorithm main-
tains the same order of error bound without knowing the op-
timal value function V'*.

We also identify the existence of “stable field” for our al-
gorithm, and we prove that under some specific choice of the
learning rate oy, with probability one the value function will
stay within the stable field.

Proposition 2 If oy < m for all t, we have that
after O (max {1 log (<) }) iterations, with probability one

» log(7)
the estimated approximation V; satisfies

3e
Vi— Vs <
Vi V7o <

S|
for any choice of initialization Vy € [0, ﬁ} .

Proposition 3 For 8 > 0, if ay < t=7 | after O(llggéi; +
(1- 7)_%5_%) iterations, with probability one the esti-
mated approximation V; satisfies

3
Vi = Vo < ==
L=~



S|
for any choice of initialization V) € [O, ﬁ} .

Such results provide guidance for choice of parameters.
Indeed, the experimental results are consistent with the the-
ory presented above.

i

(a) SM (b) T™M

b o o o

(c) 3-D SM

Figure 1: Left: In the standard maze (SM), the player’s ob-
jective is to navigate to the bottom left. Middle: In the ter-
rain maze (TM), the player proceeds to the bottom left cor-
ner. Greater costs are incurred for moving uphill than down-
hill. High positions are indicated by red colors, and low posi-
tions are indicated by blue colors. Right: An example multi-
dimensional problem. Here too the player’s objective is to
navigate to the lower-left corner (i.e., (1,1, 1)).

Experiments

To test the theory developed in Sections , we perform a num-
ber of numerical experiments.> We test our methods on a va-
riety of MDPs of different sizes and complexity. Our results
show that state aggregation can achieve faster convergence
than standard value iteration; that state aggregation scales
appropriately as the size and dimensionality of the underly-
ing MDP increases; and that state aggregation is reasonably
robust to measurement error (simulated by adding noise to
the action costs) and varying levels of stochasticity in the
transition matrix.

MDP problems

We consider two problems in testing our algorithm. The first,
which we term the “standard maze problem” consists of a
dy X dg X - - - dy, grid of positions. Each position is connected
to one or more adjacent positions. Moving from position to
position incurs a constant cost, except for moving to the ter-
minal state of the maze (the position (1,...,1)) which in-
curs a constant reward.® There is a unique path from each
position to the terminal state. A two-dimensional 20 x 20
standard maze, in which the player can move, depending on
their position, up, down left, or right is illustrated in Fig-
ure la.

The second problem is the “terrain maze problem.” As
in a standard maze, each state in the terrain maze repre-
sents a position in a d; X --- X d, grid. As before, we
imagine that the player can move from state to state only

2All experiments were performed in parallel using forty Xeon
E5-2698 v3 @ 2.30GHz CPUs. Total compute time was approxi-
mately 60 hours. Code and replication materials are available in the
Supplementary Materials.

3We rescale action costs in both the standard and terrain mazes
to ensure that the maximum cost-to-go is exactly 100.

Performance on € Test

Eps (€)
o —+— Terrain
Standard

.
g
5 7

0.2 04 06 08 1.0
Value of ¢

(a) Influence of € on both mazes

Standard Maze Efficiency Test Terrain Maze Efficiency Test

75 Algorithm 75 Algorithm
— SA — SA
550 vi 5 50 Vi
i o
25 25
0 0
0 3 0.0 0.5 1.0 1.5

1 2
Updates (x1e7) Updates (x1e7)

(b) Efficiency test on standard (c) Efficiency test on terrain
maze maze

Figure 2: Left: The error of state-aggregated value itera-
tion after convergence as a function of . Middle: Average
convergence speed and 95% confidence intervals of state-
aggregated value iteration on 500 x 500 standard mazes.
Right: Average convergence speed and 95% confidence in-
tervals of state-aggregated value iteration on 500 x 500 ter-
rain mazes.

by travelling a single unit in any direction. (The player is
only constrained from moving out of the grid entirely.) The
player receives a reward for reaching the final square of the
maze, which again we place at position (1,...,1). How-
ever, in contrast to the standard maze game, the player’s
movements incur different costs at different positions. In
particular, the maze is determined by a “height function”
H:{1,...,di} x --- x {1,...,d,} — R. The cost of
movement is set to be the difference in heights between the
player’s destination position and their current position, nor-
malized appropriately.

In both problems, we also allow for stochasticity con-
trolled by a parameter p which gives the probability that
a player moves in their intended direction. For p = 1, the
MDP is deterministic; otherwise, with probability 1 — p, the
player moves in a different direction chosen uniformly at
random.

In both problems, the actions available at any state corre-
spond to a very sparse transition probability vectors, since
players are constrained to move along cardinal directions at
a rate of a single unit. However, in the standard maze game,
the cost-to-go at any position is extremely sensitive to the
costs-to-go at states that are very distant. In a 10 x 10 stan-
dard maze, the initial tile (i.e., position (1, 1)) is often be-
tween 25 and 30 units away from the destination tile (i.e.,
position (10, 10)). In contrast, in the terrain maze game, the
cost-to-go is much less sensitive to far away positions, be-
cause local immediate costs, dictated by the slopes one must
climb or go down to move locally, are more significant.



Type Dims. Error 95% CI Type Dims. Error 95% CI
Trn. 100 x 100 441  +0.14 3

Trn. 200 x 200 434 +0.16 ?"' 181 ;(9); igggg
Trn. 300 x 300 4.65  +0.18 m. - : -UUs
Trn. 500 x 500 427 +0.17 Trn. 10° 3.59  +0.008
Tm. 1000 x 1000 427  +0.16 Trn. 106 3.85 40.005
Std. 100 x 100 143 £0.16 Std. 100 136 +0.019
Std. 200 x 200 1.39  +0.15 4

Std. 300x300 142 +0.20 Std. 107 136 £0.017
Sd. 500 x 500 111 +0.16 Std. 10 123 +0.013
Std. 1000 x 1000 140  +0.16 Std. 10 131 40.013

Table 1: Scaling properties of state aggregation value itera-
tion. Reported errors represent the mean value from running
each experiment 20 times.

Benchmarks and parameters We measure convergence
by the ¢>°-distance (hereafter “error”’) between the current
cost-to-go vector and the true cost-to-go vector, and we eval-
uate the speed based on the size of error and the number of
updates performed. Notice that for global value iteration, an
update for state s has the form

T. = mi P’
(V) 2%1}41 (r(s,a) + S,aV),

and an update for mega-state j (represented by s) has the
form

Wi(j) = (1 — cvv—gg)Wim1(§) + s TV (Wi_1).

Because the transition matrix is not dense in our examples,
the computational resources required for global value itera-
tion update and aggregated update are roughly the same. For
each iteration, the value iteration will always perform |S]|
updates, and for Algorithm 3, only K updates, one for each
mega-state, will be performed if in the aggregation phase.
All experiments are performed with a discount factor
~v = 0.95. We set |.A;| = 5 and |B;| = 2 for every 4, and for
learning rate we set a; = % . The cost function is normal-
ized such that |[V*||» = 100, and we choose aggregation

constant to be ¢ = 0.5 (unless otherwise indicated). We set
the initial cost vector Vj to be the zero vector 0.

Results

Influence of . We test the effect of € on the error Algo-
rithm 3 produces. We run experiments with aggregation con-
stant e = 0.05,0.1, and 0.5 for 500 x 500 standard and ter-
rain mazes. For each €, we run 1,000 iterations of Algorithm
3, and each experiment is repeated 20 times; the results,
shown in Figure 2a, indicate that the approximation error
scales in proportion to €, which is consistent with Proposi-
tion 1 and Theorem 1.

Efficiency. We test the convergence rate of Algorithm
3 against value iteration on 500 x 500 standard and ter-
rain mazes, repeating each experiment 20 times. From Fig-
ure 2b and 2c, we see that state-aggregated value iteration
is very efficient at the beginning phase, converging in fewer
updates than value iteration.

Scalibility of state aggregation. We run state-abstracted
value iteration on standard and terrain mazes of size 100 x
100, 200 x 200, 300 x 300, 500 x 500, and 1000 x 1000 for

Type P o Error 95% CI Type p o Error 95% CI

Terrain 092 0.00 4.44 +0.24 Standard 092 0.00 139  40.19
Terrain 092 0.01 441 +0.18 Standard  0.92  0.01 1.61 +0.23
Terrain 092 0.05 497  +0.17 Standard 092 0.05 262  +0.15
Terrain 092 0.10 6.36 +0.19 Standard 0.92 0.10 5.56 +0.46
Terrain  0.95 0.00 4.43 +0.17 Standard 095 0.00 1.49 +0.17
Terrain  0.95 0.01 432  +0.14 Standard 095 0.01 157 +0.14
Terrain  0.95 0.05 4.93 +0.17 Standard 095 0.05 2.86 +0.17
Terrain 095 0.10  6.39 +0.17 Standard  0.95 0.10 5.72 +0.39
Terrain  0.98 0.00 437  +0.19 Standard  0.98 0.00 143 +0.18
Terrain 098 0.01 4.31 +0.14 Standard 098 0.01 1.88 +0.16
Terrain 098 0.05 501 +0.14 Standard  0.98 0.05 348  +0.28
Terrain 098 0.10 6.52 40.20 Standard 098 0.10 5.86 +0.26

Table 2: Numerical experiments illustrating the robustness
of state-aggregated value iteration to stochasticity and noisy
action costs. Errors represent the average ¢.-distance to the
true cost-to-go values in twenty independent runs.

1000 iterations. We repeat each experiment 20 times, dis-
playing the results in Table 1. Next, we run state-aggregated
value iteration on terrain mazes of increasingly large un-
derlying dimension, as shown in the right side of Table 1,
likewise for 20 repetitions for each size. The difference
with the previous experiment is that not only does the state
space increase, the action space also increases exponentially.
Our results show that the added complexity of the high-
dimensional problems does not appear to substantially affect
the convergence of state-aggregated value iteration and our
method is able to scale with very large MDP problems.

Robustness. We examine the robustness of state-
aggregated value iteration to two sources of noise. We
generate 500 x 500 standard and terrain mazes, varying the
level of stochasiticity by setting p = 0.92,0.95,0.98. We
also vary the amount of noise in the cost vector by adding a
mean 0, standard deviation ¢ = 0.0, 0.01,0.05, 0.1 normal
vector to the action costs. The results, shown in Table 2,
indicate that state-aggregated value iteration is reasonably
robust to stochasiticity and measurement error.

Continuous Control Problems

We conclude the experiments section by showing the perfor-
mance of our method on a real-world use case in continuous
control. These problems often involve solving complex tasks
with high-dimensional sensory input. The idea typically in-
volves teaching an autonomous agent, usually a robot, to
successfully complete some task or achieve some goal state.
These problems are often very tough as they reside in the
continuous state space (and many times action space) do-
main.

We already showcased the significant reduction in algo-
rithm update costs during learning on grid-world problems
in comparison with value iteration. Our goal for this sec-
tion is to showcase real world examples of how our method
may be practically applied in the field of continuous control.
This is important not only to emphasize that our idea has
a practical use case, but also to further showcase its ability
to scale into extremely large (and continuous) dimensional
problems.

Environment We choose to use the common baseline con-
trol problem in the ”CartPole” system. The CartPole system



is a typical physics control problem where a pole is attached
to a central joint of a cart, which moves along an endless
friction-less track. The system is controlled by applying a
force to either move to the right or left with the goal to bal-
ance the pole, which starts upright. The system terminates
if (1) the pole angle is more than 12 degrees from the ver-
tical axis, or (2) the cart position is more than 2.4 cm from
the center, or (3) the episode length is greater than 200 time-
steps.

During each episode, the agent will receive constant re-
ward for each step it takes. The state-space is the continuous
position and angle of the pole for the cartpole pendulum sys-
tem and the action-space involves two actions - applying a
force to move the cart left or right. A more in-depth expla-
nation of the problem can be found in Kumar (2020).

Results Since the CartPole problem is a multi-
dimensional continuous control problem, there is no
ground truth v-values so we choose to utilize the dense
reward nature of this problem and rely on the accumulated
reward to quantify algorithm performance as opposed to
error. In addition, since value iteration requires discrete
states, we discretize all continuous dimensions of the state
space into bins and generate policies on the discretized en-
vironment. More specifically, we discretize the continuous
state space into bins by dividing each dimension of the
domain into equidistant intervals.

For our aggregation algorithm, we use v = 0.99 follow-
ing what is commonly used in this problem in past works.
We set the initial cost vector 1/ to be the zero vector. We fix
€ =0.2 and set oy = ﬁ We note that given the symmetric

nature of this continuous control problem, we do not need to
alternate between global and aggregate updates. The adap-
tive aggregation of states already groups states effectively
together for strong performance and significant speedups in
the number of updates required. We first do a sweep of num-
ber of bins to discretize the problem space to determine the
number that best maximizes the performance of value itera-
tion in terms of both update number and reward and found
this to be around 2000 bins. We then compare the perfor-
mances of state aggregation and value iteration on this set-
ting in figure 3. To also further showcase the adaptive advan-
tage of our method, we choose a larger bin (10000) number
that likely would have been chosen if no bin sweeping had
occurred and show that our method acts as an “automatic
bin adjuster” and offers the significant speedups without any
prior tuning in figure 3. Interestingly in both situations, the
experimental results show that the speedup offered by our
method seem significant across different bin settings of the
CartPole problem. These results may prove to have strong
theoretical directions in future works.

Discussion

Value iteration is an effective tool for solving Markov de-
cision processes but can quickly become infeasible in prob-
lems with large state and action spaces. To address this diffi-
culty, we develop adaptive state-aggregated value iteration,
a novel method of solving Markov decision processes by ag-
gregating states with similar cost-to-go values and updating
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Figure 3: CartPole problem reward versus number of up-
dates comparison between value iteration and our adaptive
state aggregation method. Even in use-cases such as con-
tinuous control, our method offers valuable speedups in the
learning process of MDPs and stays robust against different
discretization schemes.

them in tandem. Unlike previous methods of reducing the
dimensions of state and action spaces, our method is gen-
eral and does not require prior knowledge of the true cost-
to-go values to form aggregate states. Instead our algorithm
learns the cost-to-go values online and uses them to form
aggregate states in an adaptive manner. We prove theoretical
guarantees for the accuracy, convergence, and convergence
rate of our state-aggregated value iteration algorithm, and
demonstrate its applicability through a variety of numerical
experiments.

State- and action-space reduction techniques are an area
of active research. Our contribution in the dynamic state-
aggregated value iteration algorithm provides a general
framework for approaching large MDPs with strong numer-
ical performances justifying our method. We believe our al-
gorithm can serve as a foundational ground for both future
empirical and theoretical work.

We conclude by discussing promising directions for fu-
ture work on adaptive state aggregation. First, we believe
that reducing the number of updates per state by dynamically
aggregating states can also be extended more generally in
RL settings with model-free methods. Second, our proposed
algorithm’s complexity is of the same order as value itera-
tion. Future work may seek to eliminate the dependence on
< in the error bound. Lastly, by adaptively choosing ¢, it may
be possible to achieve better complexity bounds not only
for planning problems but also for generative MDP models
(Sidford et al. 2018b,a).
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