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Abstract

A recent emerging trend in the literature on learning in
games has been concerned with providing accelerated learn-
ing dynamics for correlated and coarse correlated equilibria
in normal-form games. Much less is known about the sig-
nificantly more challenging setting of extensive-form games,
which can capture sequential and simultaneous moves, as
well as imperfect information. In this paper, we estab-
lish faster no-regret learning dynamics for extensive-form
correlated equilibrium (EFCE) in multiplayer general-sum
imperfect-information extensive-form games. When all
agents play T repetitions of the game according to the ac-
celerated dynamics, the correlated distribution of play is
an O(T−3/4)-approximate EFCE, where the O(·) notation
suppresses parameters polynomial in the description of the
game. This significantly improves over the best prior rate of
O(T−1/2). To achieve this, we develop a framework for per-
forming accelerated Φ-regret minimization via predictions.
To employ our generic template, one of our key technical
contributions is to characterize the stability of fixed points
associated with trigger deviation functions through a refined
perturbation analysis of a structured Markov chain. Finally,
experiments on standard benchmarks corroborate our theoret-
ical findings.

1 Introduction
Game-theoretic solution concepts describe how agents
should rationally act in games. Over the last two
decades there has been tremendous progress in imperfect-
information game solving and algorithms based on game-
theoretic solution concepts have become the state of the art.
Prominent milestones of this were an optimal strategy for
Rhode Island hold’em poker (Gilpin and Sandholm 2007),
a near-optimal strategy for limit Texas hold’em (Bowling
et al. 2015), and a superhuman strategy for no-limit Texas
hold’em (Brown and Sandholm 2017; Moravčík et al. 2017).
In particular, these advances rely on algorithms that ap-
proximate Nash equilibria (NE) of two-player zero-sum
extensive-form games (EFGs). EFGs are a broad class of
games that capture sequential and simultaneous interaction,
and imperfect information. For two-player zero-sum EFGs,
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it is by now well-understood how to compute a Nash equi-
librium at scale: in theory this can be achieved using ac-
celerated uncoupled no-regret learning dynamics, for exam-
ple by having each player use an optimistic regret minimizer
and leveraging suitable distance-generating functions (Hoda
et al. 2010; Kroer et al. 2020; Farina, Kroer, and Sandholm
2021) for the EFG decision space. Such a setup converges
to an equilibrium at a rate of O(T−1). In practice, mod-
ern variants of the counterfactual regret minimization (CFR)
framework typically lead to better performance, although
the worst-case convergence rate is O(T−1/2) (Zinkevich
et al. 2007). CFR is also an uncoupled no-regret learning
dynamic.

However, many real-world applications are not two-
player zero-sum games, but instead have general-sum util-
ities and often more than two players. In such settings, Nash
equilibrium suffers from several drawbacks when used as
a prescriptive tool. First, there can be multiple equilibria,
and an equilibrium strategy may perform very poorly when
played against the “wrong” equilibrium strategies of the
other player(s). Thus, the players effectively would need to
communicate in order to find an equilibrium, or hope to con-
verge to it via some sort of learning dynamics. Second, find-
ing a Nash equilibrium is computationally hard both in the-
ory (Daskalakis, Goldberg, and Papadimitriou 2006; Etes-
sami and Yannakakis 2007) and in practice (Berg and Sand-
holm 2017). This effectively squashes any hope of develop-
ing efficient learning dynamics that converge to general-sum
Nash equilibria.

A competing notion of rationality proposed by (Aumann
1974) is that of correlated equilibrium (CE), typically mod-
eled via a trusted mediator who privately recommends ac-
tions to the players. Unlike NE, it is known that the latter
can be computed in polynomial time and, perhaps even more
importantly, it can be attained through uncoupled learning
dynamics, where the players only need to reason about their
own observed utilities. This overcomes the often unrea-
sonable presumption that players have knowledge about the
other players’ utilities. At the same time, uncoupled learn-
ing algorithms have proven to be a remarkably scalable ap-
proach for computing equilibria in large-scale games, as de-
scribed above. The basic CE notion is defined for normal-
form games, and there it has long been known that uncou-
pled no-regret learning dynamics can converge to CE or



the coarse correlated equilibrium (CCE) variant at a rate of
O(T−1/2) (Hart and Mas-Colell 2000; Celli et al. 2019).
More recently, it was shown that accelerated uncoupled
no-regret learning dynamics can lead to CCE in normal-
form games at a rate of Õ(T−1) (Daskalakis, Fishelson,
and Golowich 2021), where the notation Õ(·) suppresses
polylog(T ) factors.

In the context of EFGs, the idea of correlation is much
more intricate, and there are several notions of correlated
equilibria based on when the mediator gives recommenda-
tions and how the mediator reacts to players who disre-
gard the advice. One of the most compelling notions for
EFGs is the extensive-form correlated equilibrium (hence-
forth EFCE) (von Stengel and Forges 2008) for extensive-
form games with perfect recall. Because of the sequential
nature, the presence of private information in the game, and
the gradual revelation of recommendations, the constraints
associated with EFCE are significantly more complex than
for normal-form games. For these reasons, the question
of whether uncoupled learning dynamics can converge to
an EFCE was only very recently resolved by (Celli et al.
2020). Moreover, in a follow-up work they also established
an explicit rate of convergence of O(T−1/2) (Farina et al.
2021). Our paper is concerned with the following funda-
mental question: Can we develop faster uncoupled no-regret
learning dynamics for EFCE?

1.1 Contributions
Our primary contribution is to answer this question in the
positive:
Theorem 1.1. On any perfect-recall general-sum multi-
player extensive-form game, there exist uncoupled no-regret
learning dynamics which lead to a correlated distribution
of play that is an O(T−3/4)-approximate EFCE. Here the
O(·) notation suppresses game-specific parameters polyno-
mial in the size of the game.

We achieve this result using the framework of predictive
(also known as optimistic) regret minimization (Chiang et al.
2012; Rakhlin and Sridharan 2013b). One of our concep-
tual contributions is to connect this line of work with the
framework of Φ-regret minimization of (Greenwald and Ja-
fari 2003; Gordon, Greenwald, and Marks 2008), by provid-
ing a general template for stable-predictive Φ-regret min-
imization. The importance of Φ-regret is that it leads to
substantially more powerful notions of hindsight rational-
ity, beyond the usual external regret (Gordon, Greenwald,
and Marks 2008), including the powerful notion of swap re-
gret (Blum and Mansour 2007). Moreover, one of the pri-
mary insights behind the result of Farina et al. (2021) is to
cast convergence to an EFCE as a Φ-regret minimization
problem. Given these prior connections, we believe that
our stable-predictive template is of independent interest, and
could lead to further applications in the future.

Theorem 1.1 extends and strengthens several prior papers
in the literature, including the seminal work of (Syrgkanis
et al. 2015) that provides accelerated dynamics for coarse
correlated equilibrium in normal-form games, as well as
the more recent result of Chen and Peng (2020) which

showed O(T−3/4) convergence to a correlated equilibrium
in normal-form games. For the more challenging class
of extensive-form games, accelerated rates were previously
known only for finding a Nash equilibrium in the special
case of two-player zero-sum games, where an O(T−3/4) rate
was achieved via a stable-predictive CFR setup (Farina et al.
2019a) and an O(T−1) rate was achieved via optimistic re-
gret minimizers coupled with suitable distance-generating
functions (Farina, Kroer, and Sandholm 2019b).

From a technical standpoint, in order to apply our generic
template for accelerated Φ-regret minimization, we estab-
lish two separate ingredients. First, we develop a stable-
predictive external regret minimizer for the set of transfor-
mations Φ associated with EFCE. This differs from the con-
struction by (Farina et al. 2021) in that we have to addition-
ally guarantee and preserve the stability—and subsequently
the predictivity—throughout the construction. The second
component consists of sharply characterizing the stability of
fixed points of trigger deviation functions. This turns out
to be particularly challenging, and direct extensions of prior
techniques appear to only give a bound that is exponential in
the size of the game. In this context, one of our key technical
contributions is to provide a refined perturbation analysis for
a Markov chain consisting of a rank-one stochastic matrix,
employing tools that have not been used before in this line
of work, and substantially extending the techniques of Chen
and Peng (2020). This leads to a rate of convergence that de-
pends polynomially on the description of the game, which is
crucial for the applicability of the accelerated dynamics. Fi-
nally, we support our theoretical findings with experiments
on several general-sum benchmarks.

1.2 Further Related Work
The line of work on accelerated no-regret learning was pio-
neered by Daskalakis, Deckelbaum, and Kim (2015), show-
ing that one can bypass the adversarial Ω(T−1/2) barrier
for the incurred average regret if both players in a zero-
sum game employ an uncoupled variant of the excessive
gap technique (Nesterov 2005), leading to a near-optimal
rate of O(log T/T ). Subsequently, Rakhlin and Sridharan
(2013a) showed that the optimal rate of O(1/T ) can be ob-
tained with a remarkably simple variant of Online Mirror
Descent which incorporates a prediction term in the update
step. While these results only hold for zero-sum games,
(Syrgkanis et al. 2015) showed that an O(T−3/4) rate can be
obtained for multiplayer general-sum normal-form games.
In a recent result, Chen and Peng (2020) strengthened the re-
gret bounds of (Syrgkanis et al. 2015) from external to swap
regret using the celebrated construction of Blum and Man-
sour (2007). Even more recently, Daskalakis, Fishelson, and
Golowich (2021) established a near-optimal rate of conver-
gence of Õ(1/T ) to a coarse correlated equilibrium when all
players employ the Optimistic Multiplicative Weights Up-
date (OMWU) algorithm in a normal-form game.

Correlated equilibrium in extensive-form games is much
less understood than Nash equilibrium. A feasible EFCE
can also be computed efficiently through a variant of the
Ellipsoid algorithm (Papadimitriou and Roughgarden 2008;



Jiang and Leyton-Brown 2015), and an alternative sampling-
based approach was given by Dudík and Gordon (2009).
However, those approaches perform poorly in large-scale
problems, and do not allow the players to arrive at EFCE
via distributed learning. (Celli et al. 2019) devised variants
of the CFR algorithm that provably converge to normal-
form coarse correlated equilibria, a solution concept much
less appealing than EFCE in extensive-form games (Gor-
don, Greenwald, and Marks 2008). Finally, (Morrill et al.
2021a,b) characterize hindsight rationality notions and as-
sociate a set of solution concepts with suitable O(T−1/2)
no-regret learning dynamics.

2 Preliminaries
2.1 Extensive-Form Games
An extensive-form game is abstracted on a directed and
rooted game tree T . The set of nodes of T is denoted with
H; non-terminal nodes are referred as decision nodes, and
are associated with a player who acts by selecting an action
from a set of possible actions A(h), where h ∈ H repre-
sents the decision node. By convention, the set of players
[n] ∪ {c} includes a fictitious agent c who “selects” actions
according to fixed probability distributions dictated by the
nature of the game (e.g., the roll of a dice); this intends
to model external stochastic phenomena occurring during
the game. For a player i ∈ [n] ∪ {c}, we let H(i) ⊆ H
be the subset of decision nodes wherein a player i makes
a decision. The set of leaves Z ⊆ H, or equivalently the
terminal nodes, correspond to different outcomes; once the
game transitions to a terminal node z ∈ Z , payoffs are as-
signed to each player based on a set of normalized utility
functions {u(i) : Z → [−1, 1]}i∈[n]. It will also be conve-
nient to represent with p(c)(z) the product of probabilities
of “chance” moves encountered in the path from the root
until the terminal node z ∈ Z . In this context, the set of
nodes in the game tree can be expressed as the (disjoint)
unionH :=

⋃
i∈[n]∪{c}H(i) ∪ Z .

Imperfect Information. To model imperfect information,
the set of decision nodesH(i) of player i are partitioned into
a collection of sets J (i), which are called information sets.
Each information set j ∈ J (i) groups nodes which cannot
be distinguished by i. Thus, for any nodes h, h′ ∈ j we have
A(h) = A(h′). As usual, we assume that the game sat-
isfies perfect recall: players never forget information once
acquired. This implies, in particular, that for any nodes
h, h′ ∈ j the sequence of i’s actions from the root until h
must coincide with the sequence from the root to node h′;
otherwise, i would be able to distinguish between the nodes
h and h′ by virtue of perfect recall. We will also define a
partial order ≺ on J (i), so that j ≺ j′, for j, j′ ∈ J (i), if
there exist nodes h ∈ j and h′ ∈ j′ such that the path from
the root to h′ passes through h. If j ≺ j′, we will say that j
is an ancestor of j′, or equivalently, j is a descendant of j′.
Sequence-form Strategies. For a player i ∈ [n], an in-
formation set j ∈ J (i), and an action a ∈ A(j), we will
denote with σ = (j, a) the sequence of i’s actions encoun-
tered on the path from the root of the game until (and in-

cluded) action a. For notational convenience, we will use
the special symbol ∅ to denote the empty sequence. Then,
i’s set of sequences is defined as Σ(i) := {(j, a) : j ∈
J (i), a ∈ A(j)} ∪ {∅}; we will also use the notation
Σ

(i)
∗ := Σ(i) \ {∅}. For a given information set j ∈ J (i)

we will use σ(i)(j) ∈ Σ(i) to represent the parent sequence;
i.e. the last sequence encountered by player i before reach-
ing any node in the information set j, assuming that it exists.
Otherwise, we let σ(i)(j) = ∅, and we say that j is the root
information set of player i. A strategy for a player speci-
fies a probability distribution for every possible information
set encountered in the game tree. For perfect-recall EFGs,
strategies can be equivalently represented in sequence-form:
Definition 2.1 (Sequence-form Polytope). The sequence-
form strategy polytope for player i ∈ [n] is defined as the
following (convex) polytope:

Q(i) :=

{
q ∈ R|Σ

(i)|
≥0 : q[∅] = 1,

q[σ(i)(j)] =
∑

a∈A(j)

q[(j, a)], ∀j ∈ J (i)

}
.

This definition ensures the probability mass conservation
for the sequence-form strategies along every possible deci-
sion point. Observe that the probability of playing action
a at information set j ∈ J (i) can be obtained by divid-
ing q[(j, a)] by q[σ(i)(j)]. Analogously, one can define
the sequence-form strategy polytope for the subtree of the
partially ordered set (J (i),≺) rooted at j ∈ J ((i), which
will be denoted as Q(i)

j . Moreover, the set of determin-
istic sequence-form strategies for player i ∈ [n] is the set
Π(i) = Q(i) ∩ {0, 1}|Σ(i)|, and similarly for Π(i)

j . A well-
known implication of Kuhn’s theorem (Kuhn 1953) is that
Q(i) = coΠ(i), and Q(i)

j = coΠ
(i)
j , for any i ∈ [n] and j ∈

J (i). The joint set of deterministic sequence-form strategies
of the players will be represented with Π := ×i∈[n] Π

(i).
As such, an element π ∈ Π is an n-tuple (π(1), . . . ,π(n))
specifying a deterministic sequence-form strategy for every
player i ∈ [n]. Finally, we overload notation by representing
the utility of player i ∈ [n] under a profile π ∈ Π as

u(i)(π) :=
∑
z∈Z

p(c)(z)u(i)(z)1{π(k)[σ(k)(z)] = 1,∀k ∈ [n]}.

2.2 Regret and Optimistic Regret Minimization
Consider a convex and compact set X ⊆ Rd representing
the set of strategies of some agent. In the online decision
making framework, a regret minimizer R can be thought of
as a black-box device which interacts with the external en-
vironment via the following two basic subroutines:

• R. NEXTSTRATEGY(): The regret minimizer returns
the strategy xt ∈ X at time t;

• R. OBSERVEUTILITY(ℓt): The regret minimizer re-
ceives as feedback a linear utility function ℓt : X ∋
x 7→ ⟨ℓt,x⟩, and may alter its internal state accord-
ingly.



The error of a regret minimizer is typically measured in
terms of external regret, defined, for a time horizon T , as
follows:

RT := max
x∗∈X

T∑
t=1

⟨x∗, ℓt⟩ −
T∑

t=1

⟨xt, ℓt⟩, (1)

Φ-Regret. A conceptual generalization of the concept of
external regret is the so-called Φ-regret. In this framework
the performance of the learning algorithm is measured based
on a set of transformations Φ : X → X , leading to the
notion of cumulative Φ-regret:

RT := max
ϕ∗∈Φ

T∑
t=1

⟨ϕ∗(xt), ℓt⟩ −
T∑

t=1

⟨xt, ℓt⟩. (2)

When the set of transformations Φ coincides with the set
of constant functions, one recovers the notion of external re-
gret given in (1). However, Φ-regret is substantially more
expressive and yields more appealing notions of hindsight
rationality (Gordon, Greenwald, and Marks 2008), incorpo-
rating the notion of swap regret (Blum and Mansour 2007).
Optimistic Regret Minimization. We will employ the
following definition, which is a slight modification of the
RVU property introduced by (Syrgkanis et al. 2015).
Definition 2.2 (Stable-Predictive). Let R be a regert mini-
mizer and let ∥ · ∥ be a norm. R is said to be κ-stable with
respect to ∥ · ∥ if for all t ≥ 2, the strategies output by R
satisfy

∥xt − xt−1∥ ≤ κ.

Moreover, it is said to be (α, β)-predictive with respect to
∥ · ∥ if for all t ≥ 1 its regret RT satisfies

RT ≤ α(T ) + β

T∑
t=1

∥ℓt −mt∥2∗,

for any sequence of utility vectors ℓ1, . . . , ℓT , where ∥ · ∥∗
is the dual norm of ∥ · ∥.

We remark that, for additional flexibility, we have slightly
abused the original definition in (Syrgkanis et al. 2015) by
allowing α = α(T ).
Optimistic Follow the Regularized Leader. Let d be a 1-
strongly convex function with respect to a norm ∥ · ∥ and
η > 0 be the learning rate. OFTRL’s update rule takes the
following form for t ≥ 2:

xt := argmax
x∈X

{〈
x,mt +

t−1∑
τ=1

ℓτ

〉
− d(x)

η

}
,

where mt is the prediction at time t, and x1 :=
argminx∈X d(x). Unless specified otherwise, it will be tac-
itly assumed that mt := ℓt−1, for t ≥ 1, where by conven-
tion ℓ0 := 0. The authors in (Syrgkanis et al. 2015) estab-
lished the following property:
Lemma 2.3. OFTRL is 3η-stable1 and (Ωd/η, η)-predictive
with respect to any norm ∥ · ∥ for which d is 1-strongly
convex, where Ωd is the range of d on X , that is, Ωd :=
maxx,x′∈X {d(x)− d(x′)}.

1This assumes that ∥mt∥∗ ≤ 1 and ∥ut∥∗ ≤ 1, for any t ≥ 1.

Here we consider the entropic regularizer with respect to
the simplex d(x) :=

∑d
i=1 xi logxi, which is well-known

to be 1-strongly convex with respect to the ℓ1 norm. The
pair of dual norms in the predictivity bound will therefore
be (∥ · ∥1, ∥ · ∥∞). We call this OFTRL setup Optimistic
Multiplicative Weights Updates (OMWU).2

2.3 Extensive-Form Correlated Equilibrium
We will work with the definition of EFCE used in (Farina
et al. 2019b), which is equivalent to that of von Stengel and
Forges (2008). First, let us introduce the concept of a trigger
deviation function.

Definition 2.4. Consider some player i ∈ [n], a sequence
σ̂ = (j, a) ∈ Σ

(i)
∗ , and joint sequence-form strategies

π ∈ Π
(i)
j . A trigger deviation function with respect to a

trigger sequence σ̂ and continuation strategy π̂ is any linear
function f : R|Σ(i)| → R|Σ(i)| with the following properties.

• Any strategy π ∈ Π(i) which does not prescribe the
sequence σ̂ remains invariant. That is, f(π) = π for
any π ∈ Π(i) such that π[σ̂] = 0;

• Otherwise, the prescribed sequence σ̂ = (j, a) is mod-
ified so that the behavior at j and all its descendants is
replaced by the behavior specified by the continuation
strategy:

f(π)[σ] =

{
π[σ] if σ ̸⪰ j;

π̂[σ] if σ ⪰ j,

for all σ ∈ Σ(i) and π ∈ Π(i) such that π[σ̂] = 1.

We will let Ψ(i) := {ϕ(i)
σ̂→π̂ : σ̂ = (j, a) ∈ Σ

(i)
∗ , π̂ ∈

Π
(i)
j } be the set of all possible linear mappings defining trig-

ger deviation functions for player i. We are ready to intro-
duce the concept of EFCE.

Definition 2.5 (EFCE). For ϵ ≥ 0, a probability distribution
µ ∈ ∆|Π| is an ϵ-approximate EFCE if for every player
i ∈ [n] and every trigger deviation function ϕ

(i)
σ̂→π̂ ∈ Ψ(i),

Eπ∼µ

[
u(i)

(
ϕ
(i)
σ̂→π̂(π

(i)),π(−i)
)
− u(i)(π)

]
≤ ϵ,

where π = (π1, . . . ,πn) ∈ Π. A probability distribution
µ ∈ ∆|Π| is an EFCE if it is a 0-EFCE.

Theorem 2.6 ((Farina et al. 2021)). For every player i ∈ [n],
let π(i),1, . . . ,π(i),T ∈ Π(i) be a sequence of determinis-
tic sequence-form strategies whose cumulative Ψ(i)-regret is
R(i),T with respect to the sequence of linear utility functions

ℓ(i),t : Π(i) ∋ π(i) 7→ u(i)
(
π(i),π(−i),t

)
.

Then, the correlated distribution of play µ ∈ ∆|Π| is an
ϵ-EFCE, where ϵ := 1

T maxi∈[n] R
(i),T .

2When mt := 0, for all t ≥ 1, we recover Multiplicative
Weights Updates (MWU).



3 Accelerating Φ-Regret Minimization
In this section we first develop a general template for ac-
celerating Φ-regret minimization. Then, we instantiate our
template to obtain accelerated dynamics for EFCE. Our ap-
proach combines the framework of Gordon, Greenwald, and
Marks (2008) with stable-predictive (aka. optimistic) regret
minimization. As in (Gordon, Greenwald, and Marks 2008),
our template combines 1) a regret minimizer that outputs a
linear transformation ϕt ∈ Φ at every time t, and 2) a fixed-
point oracle for each ϕt ∈ Φ. However, our construction fur-
ther requires that 2) is stable (in the sense of Definition 2.2).
To achieve this, we will focus on regret minimizers having
the following property:

Definition 3.1. Consider a set of functions Φ such that
ϕ(X ) ⊆ X for all ϕ ∈ Φ, and a no-regret algorithm RΦ

for the set of transformations Φ which returns a sequence
(ϕt). We say that RΦ is fixed point G-stable, for G ≥ 0, if
the following conditions hold:

• Every ϕt admits a fixed point. That is, there exists
xt ∈ X such that ϕt(xt) = xt.

• For any xt such that xt = ϕt(xt), there exists xt+1 =
ϕt+1(xt+1) such that ∥xt+1 − xt∥ ≤ G.

We will show how to construct an accelerated Φ-regret
minimizer starting from the following:

1. RΦ: A κ-stable (α, β)-predictive fixed point G-stable
regret minimizer for Φ;

2. STABLEFPORACLE(ϕ; x̃, G, ϵ): A stable fixed point
oracle which returns a point x ∈ X such that (i)
∥ϕ(x) − x∥ ≤ ϵ, and (ii) ∥x − x̃∥ ≤ G (the exis-
tence of such a fixed point is guaranteed by the fixed
point G-stability assumption on the regret minimizer).

Given these two components our next theorem builds a
stable-predictive Φ-regret minimizer. The ℓ1 norm is used
only for convenience; the theorem readily extends under any
equivalent norm.

Theorem 3.2 (Accelerated Φ-Regret Minimization). Con-
sider a κ-stable (α, β)-predictive regret minimizerRΦ for a
set of linear transformations Φ with respect to the norm ∥·∥1.
Moreover, assume that RΦ is fixed point G-stable with re-
spect to Φ. Then, if we have access to a STABLEFPORACLE,
we can construct a G-stable algorithm with Φ-regret RT

bounded as

RT ≤ α(T )+2βD2
ℓκ

2T+2β

T∑
t=1

∥ℓt−ℓt−1∥2∞+Dℓ

T∑
t=1

ϵt,

where ϵt is the error of STABLEFPORACLE at time t, and
Dℓ is an upper bound on the ℓ∞ norm of ℓt’s. It is also
assumed that ∥x∥∞ ≤ 1 for all x ∈ X .

The proof is similar to that of (Gordon, Greenwald, and
Marks 2008), and it is included in Appendix B. As a result,
this theorem reduces performing accelerated Φ-regret min-
imization to (i) developing a stable-predictive regret mini-
mizer for the set Ψ(i), for any player i ∈ [n], and (ii) estab-
lishing a STABLEFPORACLE. In this context, Section 3.1 is
concerned with the former task, while Section 3.2 with the
latter.

3.1 Constructing a Stable-Predictive Regret
Minimizer for Ψ(i)

Here we develop a regret minimizer for the set coΨ(i), the
convex hull of the set of trigger deviation functions. Given
that coΨ(i) ⊇ Ψ(i), this will immediately imply a regret
minimizer for the set Ψ(i). The authors in (Farina et al.
2021) observed that the set coΨ(i) can be evaluated in two
stages. First, for a fixed sequence σ̂ = (j, a) ∈ Σ

(i)
∗ we de-

fine the set Ψ(i)
σ̂ := co

{
ϕσ̂→π̂ : π̂ ∈ Π

(i)
j

}
; then, we take

the convex hull of all Ψ(i)
σ̂ , that is, coΨ(i) = co{Ψ(i)

σ̂ : σ̂ ∈
Σ

(i)
∗ }. Correspondingly, we first develop a stable-predictive

regret minimizer for the set Ψ(i)
σ̂ , for any σ̂ ∈ Σ

(i)
∗ , and

these individual regret minimizers are then combined using
a regret circuit to conclude the construction in Theorem 3.4.
All the omitted poofs and pseudocode for this section are
included in Appendix B.1.

Stable-Predictive Regret Minimizer for the set Ψ
(i)
σ̂ .

Consider a sequence σ̂ ∈ Σ
(i)
∗ . In (Farina et al. 2021)

it was observed that the set of transformations Ψ
(i)
σ̂ :=

co
{
ϕσ̂→π̂ : π̂ ∈ Π

(i)
j

}
is the image ofQ(i)

j under the affine

mapping h
(i)
σ̂ : q 7→ ϕ

(i)
σ̂→q . Hence, it is well-known that a

regret minimizer for Ψ(i)
σ̂ can be constructed starting from a

regret minimizer for Q(i)
j . We now show that the same can

be said if one restricts to stable-predictive regret minimizers.
In particular, we have the following.

Proposition 3.3. Consider a player i ∈ [n] and any trig-
ger sequence σ̂ = (j, a) ∈ Σ

(i)
∗ . There exists an algorithm

which constructs a deterministic regret minimizer R(i)
σ̂ with

access to a K-stable (A,B)-predictive deterministic regret
minimizer R(i)

Q for the set Q(i)
j , such that R(i)

σ̂ is K-stable
and (A,B)-predictive.

This construction requires a stable-predictive regret mini-
mizer for the set Q(i)

j , for each j ∈ J (i). For this reason, in
Appendix A we develop a stable-predictive variant of CFR
using OMWU in each local regret minimizer; this follows
the construction of (Farina et al. 2019a).

Stable-Predictive Regret Minimizer for coΨ(i). The
next step consists of combining the regret minimizers Ψ(i)

σ̂ ,
for all σ̂ ∈ Σ

(i)
∗ , to a composite regret minimizer for the

set coΨ(i). To this end, we employ regret circuits (Farina,
Kroer, and Sandholm 2019c), leading to the main result of
this subsection:

Theorem 3.4. Consider a κ-stable (α, β)-predictive regret
minimizer R(i)

∆ for the the simplex ∆|Σ
(i)
∗ |, and K-stable

(A,B)-predictive regret minimizers R(i)
σ̂ for each σ̂ ∈ Σ

(i)
∗ ,

all with respect to the pair of norms (∥ · ∥1, ∥ · ∥∞). Then,
there exists an algorithm which constructs a regret mini-
mizer R(i)

Ψ for the set coΨ(i) such that (i) R(i)
Ψ is O(K +



|Σ(i)|κ)-stable, and (ii) under any sequence of utility vec-
tors L1, . . . ,LT the regret incurred can be bounded as

RT
Ψ ≤ O(α(T )+A(T ) + βD2

LK
2T )

+O(B + β|Σ(i)|2)
T∑

t=1

∥Lt −Lt−1∥2∞,

where ∥Lt∥∞ ≤ DL for all t ≥ 1.

3.2 Stability of the Fixed Points
In this subsection we complete the construction of the Ψ(i)-
regret minimizer by establishing a stable fixed point oracle
for ϕ ∈ coΨ(i). All of the proofs of this section are included
in Appendix B.2.
Multiplicative Stability. We will say that a sequence (zt),
with zt ∈ Rd

≥0, is said to be κ-multiplicative-stable, with
κ ∈ (0, 1), if (1− κ)zt−1

i ≤ zt
i ≤ (1 + κ)zt−1

i , for any i ∈
[d] and for all t ≥ 2. We will also say that zt

i and zt−1
i are κ-

multiplicative-close when (1−κ)zt−1
i ≤ zt

i ≤ (1+κ)zt−1
i .

Importantly, this strong notion of stability is guaranteed by
OMWU (see Lemma B.2). Thus, if D(i) is the depth of i’s
subtree and D

(i)
x is an upper bound on the ℓ1 norm of any

vector in the sequence-form polytopeQ(i), we can show the
following:

Lemma 3.5. When each regret minimizer R(i)
σ̂ is con-

structed using predictive CFR instantiated with OMWU
with learning rate η (Theorem A.4) such that for all
σ̂ ∈ Σ

(i)
∗ , the output sequence is O(η(D(i))2D

(i)
x Dℓ)-

multiplicatively-stable. Moreover, if the regret minimizer
R(i)

∆ is realized using OMWU with learning rate η, it will
output an O(η|Σ(i)|Dℓ)-multiplicatively-stable sequence.

This characterization will be crucial for establishing the
stability of the fixed points. In particular, following the ap-
proach of (Farina et al. 2021), let us introduce the following
definitions.

Definition 3.6. Consider a player i ∈ [n] and let J ⊆ J (i)

be a subset of i’s information sets. We say than J is a trunk
of J (i) if, for every j ∈ J , all predecessors of j are also in
J .

Definition 3.7. Consider a player i ∈ [n], a trunk J ⊆ J (i),

and ϕ ∈ coΨ(i). A vector x ∈ R|Σ
(i)|

≥0 is a J-partial fixed
point of ϕ if the following conditions hold:

• x[∅] = 1 and x[σ(i)(j)] =
∑

a∈A(j) x[(j, a)], for all
j ∈ J ;

• ϕ(x)[∅] = x[∅] = 1, and ϕ(x)[(j, a)] = x[(j, a)],
for all j ∈ J , and a ∈ A(j).

The main question that arises under the stable-predictive
framework is whether this fixed point operation can cause a
substantial degradation in terms of stability. One of our key
results is that the associated Markov chain has a particular
structure which enables us to establish polynomial degrada-
tion in terms of the stability. More precisely, we first prove
the following key lemma:

Lemma 3.8. Let M be the transition matrix of an m-state
Markov chain such that M := v1⊤ + C, where C is a
matrix with strictly positive entries and columns summing to
1−λ, and v is a vector with strictly positive entries summing
to λ. Then, if π is the stationary distribution of M, there
exists, for each i ∈ [m], a (non-empty) finite set Fi and
F =

⋃
i Fi, and corresponding parameters bj ∈ {0, 1}, 0 ≤

pj ≤ m− 2, |Sj | = m− pj − bj − 1, for each j ∈ Fi, such
that

πi =

∑
j∈Fi

λpj+1(v[qj ])
bj
∏

(s,w)∈Sj
C[(s, w)]∑

j∈F Cjλpj+bj
∏

(s,w)∈Sj
C[(s, w)]

,

where Cj = Cj(m) is a positive constant.

The main takeaway of this lemma is that the station-
ary distribution has an affine dependence on the vector v;
note that such a dependence is not at all apparent from the
Markov chain tree theorem, and derives from the partic-
ular structure of the Markov chain. This will be crucial
in order to obtain polynomial bounds in terms of stability.
Specifically, using a slight variant of Lemma 3.8 (see Corol-
lary B.8) leads to the following stability bound:
Corollary 3.9. Let M,M′ be the transition matrices of
m-state Markov chains such that M = v1⊤ + C and
M′ = v′1⊤+C′, where C and C′ are matrices with strictly
positive entries, and v,v′ are vectors with strictly positive
entries such that v = r/l and v′ = r′/l′, for some l > 0
and l′ > 0. If π and π′ are the stationary distributions of
M and M′, let w := lπ and w′ := l′π′. Finally, let λ and
λ′ be the sum of the entries of v and v′ respectively. Then, if
(i) the matrices C and C′ are κ-multiplicative-close; (ii) the
scalars λ and λ′ are κ-multiplicative-close; (iii) the vectors
r and r′ are γ-multiplicative-close; and (iv) the numbers
l and l′ are also γ-multiplicative-close, then the vectors w
and w′ are (γ + O(κm))-multiplicative-close, for a suffi-
ciently small κ = O(1/m).

Importantly, observe that the “closeness” of w and w′

does not scale with γ · m. Using this bound we manage
to show the following:
Proposition 3.10. Consider a player i ∈ [n], and let ϕ =∑

σ̂∈Σ(i)
∗

λ[σ̂]ϕ
(i)
σ̂→qσ̂

be a transformation in coΨ(i) such
that the sequence of λt’s and qt

σ̂’s is κ-multiplicative-stable,
for all σ̂ ∈ Σ

(i)
∗ . If xt is a γ-multiplicative-stable J-partial

fixed point sequence, there is an algorithm which computes
a (J ∪ {j∗})-partial fixed point (xt)′ of ϕ such that the se-
quence of (x′)t’s is (γ+O(κ|A(j∗)|))-multiplicative-stable,
for any sufficiently small κ = O(1/|A(j∗)|).

Thus, using our refined characterization, we manage to
bypass the substantial overhead of the term γ|A(j∗)|, which
would follow using techniques similar to Chen and Peng
(2020). This turns out to be crucial for obtaining a polyno-
mial dependence on the size of the game. Finally, we induc-
tively employ this proposition to show the overall stability
of the fixed points:
Theorem 3.11. Consider a player i ∈ [n], and let ϕ =∑

σ̂∈Σ(i)
∗

λ[σ̂]ϕ
(i)
σ̂→qσ̂

be a transformation in coΨ(i) such
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Figure 1: The performance of MWU, OMWU, and RM+ on three general-sum EFGs.

that the sequence of λt’s and qt
σ̂’s is κ-multiplicative-

stable, for all σ̂ ∈ Σ
(i)
∗ . Then, there exists an algorithm

which computes a fixed point qt ∈ Q(i) of ϕ such that
the sequence of qt’s is O(κ|A(i)|D(i))-multiplicative-stable,
where |A(i)| := maxj∈J (i) |A(j)|, for a sufficiently small
κ = O(1/(|A(i)|D(i))).

Finally, using the stability bounds derived in Lemma 3.5,
we arrive at the following conclusion:

Corollary 3.12. The sequence of fixed points will be
(ηκ)-multiplicative-stable, where κ = O((D

(i)
x (D(i))2 +

|Σ(i)|)|A(i)|D(i)Dℓ), for any sufficiently small η = O(1/κ).

Putting Everything Together. Finally, having established
these ingredients, we use the template of Theorem 3.2 to
obtain Theorem 1.1, as we formally show in Appendix B.3.

4 Experiments
In this section we experimentally investigate the perfor-
mance of our stable-predictive algorithm compared to two
other popular approaches based on a CFR-style decomposi-
tion of regrets into local regret-minimization problems: the
existing algorithm by Farina et al. (2021) instantiated with
(i) regret matching+ (RM+) (Tammelin 2014) for each sim-
plex (in place of regret matching), and (ii) using the vanilla
MWU algorithm for each simplex. In accordance to the
theoretical predictions, the stepsize for OMWU is set as
ηt = τ · t−1/4 (cf. Corollary B.11), and for MWU it is set as
ηt = τ · t−1/2, where the parameter τ is chosen by picking
the best-performing value among {0.01, 0.1, 1, 10, 100}. In
particular, we evaluate their performance based on the fol-
lowing popular benchmark games: (i) a three-player vari-
ant of Kuhn poker (Kuhn 1950); (ii) a two-player bargain-
ing game known as Sheriff (Farina et al. 2019b)—a bench-
mark game introduced specifically for the study of corre-
lated equilibria; and (iii) a three-player version of Liar’s
dice (Lisý, Lanctot, and Bowling 2015). A detailed descrip-
tion of each of the three game instances is available in Ap-
pendix D.

Figure 1 shows the performance of each of the three learn-
ing dynamics for computing EFCE. On the x-axis we plot
the number of iterations performed by each algorithm, and
on the y-axis we plot the EFCE gap, defined as the maximum
advantage that any player can gain by defecting optimally
from the mediator’s recommendations. It should be noted

that one iteration costs the same for every algorithm, up to
constant factors. We see that on every game, OMWU per-
forms better than or on par with RM+ and MWU. On Sher-
iff, OMWU performs significantly better than both RM+

and MWU, by about an order of magnitude. One caveat to
these results is that we did not use two tricks that help CFR+

in two-player zero-sum EFG solving: alternation and linear
averaging. These tricks are known to retain convergence
guarantees in that context (Tammelin et al. 2015; Farina,
Kroer, and Sandholm 2019a; Burch, Moravcik, and Schmid
2019), but it is unclear if they still guarantee convergence in
the EFCE setting.

5 Conclusions
In this paper we described uncoupled no-regret learning dy-
namics so that if all agents play T repetitions of the game ac-
cording to the dynamics, the correlated distribution of play
is an O(T−3/4)-approximate EFCE. This substantially im-
proves over the prior best rate of O(T−1/2). One of our main
technical contributions was to characterize the stability of
the fixed points associated with trigger deviation functions
through a refined perturbation analysis of a certain struc-
tured Markov chain, which may be of independent inter-
est. Finally, experiments conducted on standard benchmarks
corroborated our theoretical findings.

Following recent progress in normal-form games
(Daskalakis, Fishelson, and Golowich 2021; Anagnostides
et al. 2021), an important question for the future is to obtain
a further acceleration of the order Õ(T−1). We believe
that our characterization of the fixed points associated with
trigger deviation functions is an important step towards
achieving this goal.
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A Sequential Decision Making and Stable-Predictive CFR
The main purpose of this section is to provide a stable-predictive variant of CFR following the construction of (Farina et al.
2019a). The main result is given in Theorem A.4. We begin by introducing the basic setting of sequential decision making.

A sequential decision process can be represented using a tree consisting of two types of nodes: decision nodes and obser-
vation nodes. The set of all decision nodes will be denoted by J , while the set of observation nodes by K. At every decision
node j ∈ J the agent has to select a strategy xj in the form of a probability distribution over all possible actions A(j). On
the other hand, the agent receives some type of feedback at each observation point k ∈ K. More precisely, it is assumed that
the agent may receive a signal from a set S(k). At every decision point j ∈ J of the sequential decision process, the strategy
xj ∈ ∆|A(j)| secures a (linear) utility of the form ⟨ℓj ,xj⟩, for some utility vector ℓj . The expected utility throughout the entire
decision process can be expressed as

∑
j∈J πj⟨ℓj ,xj⟩, where πj is the probability that the agent reaches the decision point

j. Before we proceed with the representation of the strategies, it is important to point out that in all extensive-form games of
perfect recall the agents face a sequential decision process.
Decomposition of Sequence-Form Space. Our following construction will rely on a recursive decomposition of the sequence-
form space X△:

• Consider an observation node k ∈ K, and let Ck be the children decision points of k. Then, X△k can be decomposed as
the following Cartesian product:

X△k := ×
j∈Ck
X△j ; (3)

• Consider a decision point j ∈ J , and let Cj = {k1, . . . , knj} be the children observation points of j, with nj = |A(j)|.
Then, X△j can be decomposed as follows:

X△j :=





λ1

...
λnj

λ1x1

...
λnj

xnj


: (λ1, . . . ,λnj

) ∈ ∆nj ,x1 ∈ X△k1
, . . . ,xnj

∈ X△knj


. (4)

In view of this decomposition, our regret minimizer for the sequence-form strategy space X△ will be established based on
local regret minimizers. Specifically, the basic ingredients for the overall construction are given in Proposition A.1 and Propo-
sition A.2. We should note that in the sequel the stability and the predictive bounds will be tacitly assumed with respect to the
pair of norms (∥ · ∥1, ∥ · ∥∞).

Proposition A.1. Consider an observation node k ∈ K, and assume access to a κj-multiplicatively-stable (αj , βj)-predictive
regret minimizer R△j over the sequence-form strategy space X△j , for each j ∈ Ck. Then, we can construct a maxj{κj}-
multiplicative-stable (A,B)-predictive regret minimizer R△k for the sequence-form strategy space X△k , where A =

∑
j∈Ck αj

and B =
∑

j∈Ck βj .

Proof. Given the decomposition of (3), the composite regret minimizer can be constructed based on the regret circuit for the
Cartesian product given in (Farina, Kroer, and Sandholm 2019c). In particular, it is direct to verify that R△,T

k =
∑

j∈Ck R
△,T
j ,

where R△,T
k is the regret accumulated by the composite regret minimizer, and R△,T

j the cumulative regret of each individual
regret minimizer. In particular, by assumption we know that

R△,T
j ≤ αj + βj

T∑
t=1

∥ℓ△,t
j − ℓ△,t−1

j ∥2∞.

As a result, we can conclude that

R△,T
k ≤

∑
j∈Ck

αj

+

∑
j∈Ck

βj

 T∑
t=1

∥ℓ△,t
k − ℓ△,t−1

k ∥2∞,

where we used that ∥ℓ△,t
j − ℓ△,t−1

j ∥∞ ≤ ∥ℓ△,t
k − ℓ△,t−1

k ∥∞. Finally, the maxj{κj}-multiplicative-stability of R△k follows
directly from the κj-multiplicative-stability of eachR△j .



Proposition A.2. Consider a decision node j ∈ J , and assume access to a K-multiplicative-stable (αk, βk)-predictive regret
minimizer R△k over the sequence-form strategy space X△k , for each k ∈ Cj . Moreover, assume access to a κ-multiplicatively-
stable (α, β)-predictive regret minimizer R∆ over the simplex ∆|A(j)|. Then, for a sufficiently small constant κ, we can
construct a (2κ+K)-multiplicatively-stable (A,B)-predictive regret minimizerR△j for the sequence-form strategy space X△j ,
where

A(T ) = α+max
k∈Cj
{αk}+ 2βD2

ℓD
2
xK

2T ;

B = max
k∈Cj
{βk}+ 2βD2

x,

with Dℓ being an upper bound on the ℓ∞ norm of the sequence (ℓ△,t), and Dx an upper bound on the ℓ1 norm of all x ∈ X△.

Proof. For this construction we will use the regret circuit for the convex hull, stated in Proposition B.1. In particular, first note
that—by assumption—the regret R△,T

k accumulated by each regret minimizerR△k can be bounded as

R△,T
k ≤ αk + βk

T∑
t=1

∥ℓ△,T
k − ℓ△,t−1

k ∥2∞.

Moreover, by construction, each regret minimizer R△k receives the same utility as R△j ; this, along with the guarantee of
Proposition B.1, imply that

R△,T
j ≤ α+max

k∈Cj
{αk}+max

k∈Cj
{βk}

T∑
t=1

∥ℓ△,t
j − ℓ△,t−1

j ∥2∞ + β

T∑
t=1

∥Λt −Λt−1∥2∞, (5)

where Λt represents the utility function received as input byR∆. Next, similarly to the analysis of Theorem 3.4, we can deduce
that for some k ∈ Cj ,

∥Λt −Λt−1∥2∞ ≤ 2∥ℓ△,t
j − ℓ△,t−1

j ∥2∞∥xt
k∥21 + 2∥ℓ△,t−1

j ∥2∞∥xt
k − xt−1

k ∥21
≤ 2D2

x∥ℓ
△,t
j − ℓ△,t−1

j ∥2∞ + 2D2
ℓD

2
xK

2,

where we used that ∥xt
k∥1 ≤ Dx, and the fact that ∥xt

k − xt−1
k ∥1 ≤ K∥xt−1

k ∥1 ≤ KDx by K-multiplicative-stability of the
sequence (xt

k). As a result, if we plug-in this bound to (5) we can conclude that

R△,T
j ≤

(
α+max

k∈Cj
{αk}+ 2βD2

ℓD
2
xK

2T

)
+

(
max
k∈Cj
{βk}+ 2βD2

x

) T∑
t=1

∥ℓ△,t
j − ℓ△,t−1

j ∥2∞.

Finally, the (2κ+K)-multiplicative-stability ofR△j can be directly verified from the decomposition given in (4).

Remark A.3. Given the decomposition provided in Equation (4), the regret circuit for the convex hull should operate on the
appropriate “lifted” subspace for each X△k , which does not essentially alter the analysis of the regret since the augmented
entries remain invariant; see (Farina, Kroer, and Sandholm 2019c, Figure 7).

Finally, we can inductively combine Proposition A.1 and Proposition A.2 in order to establish a stable-predictive variant of
CFR:
Theorem A.4 (Optimistic CFR). If every local regret minimizerR△j is updated using OMWU with a sufficiently small learning
rate η, for each j ∈ J , we can construct an O(ηDD2

xDℓ)-stable (A,B)-predictive regret minimizer R△ for the space of
sequence-form strategies X△, such that

A(T ) = O

(
log |A|

η
|J |+ η3D4

ℓD
6
xD

2T |J |
)
;

B = O(ηD2
x|J |),

(6)

where |A| := maxj∈J |A(j)|, Dℓ is an upper bound on the ℓ∞ norm of the utility functions, Dx is an upper bound on the ℓ1
norm of all x ∈ X△, and D is the depth of the decision process. Moreover,R△ is O(ηDDxDℓ)-multiplicatively-stable.

Proof. First of all, it is easy to see that all the (local) counterfactual losses (e.g., see (Farina et al. 2019a, Section 4)) have ℓ∞
norm bounded by O(DxDℓ), where recall that Dx is an upper bound on the ℓ1 norm of all x ∈ X△. As a result, we know from
Lemma B.2 that the output of each local regret minimizerR△j under OMWU with learning rate η is O(ηDxDℓ)-multiplicative-
stable. Along with Proposition A.2, we can inductively infer that the output ofR is O(ηDDxDℓ)-multiplicative-stable, where



D is the depth of the decision process. Moreover, we can conclude from this property that R is O(ηDD2
xDℓ)-stable (in the

additive sense of Definition 2.2) given that the ℓ1 norm of x ∈ X△ is bounded by Dx.
For the predictive bound, first recall that the range of the entropic regularizer on the m-dimensional simplex is logm. Thus,

by Lemma 2.3 we know that each local regret minimizer at the information set j ∈ J instantiated with OMWU with learning
rate η will be (log(|Aj |/η, η)-predictive. Moreover, we previously argued that the stability parameter K appearing in the regret
bound of Proposition A.2 will be bounded by O(ηDD2

xDℓ). As a result, our predictivity bound in (6) follows inductively from
Proposition A.2.

Naturally, the same bounds apply for constructing a regret minimizer for the subspace X△j , for any j ∈ J , as required in
Proposition 3.3.

B Omitted Proofs
In this section we include all of the omitted proofs from the main body. First, let us introduce some additional useful notation.
It will be convenient to instantiate a trigger deviation function (recall Definition 2.4) in the form of a linear mapping ϕ

(i)
σ̂→π̂ :

R|Σ(i)| ∋ x 7→M
(i)
σ̂→π̂x, where M

(i)
σ̂→π̂ is such that for any σr, σc ∈ Σ(i),

M
(i)
σ̂→π̂[σr, σc] =


1 if σc ̸⪰ σ̂ & σr = σc;

π̂[σr] if σc = σ̂ & σr ⪰ j;

0 otherwise,
(7)

where σ̂ = (j, a) ∈ Σ
(i)
∗ . It is not hard to show that the linear mapping described in (7) is indeed a trigger deviation function

in the sense of Definition 2.4. We will also sometimes use the notation x⊗ y = xy⊤ to denote the outer product of vectors x
and y. Moreover, we will write (M)♭ to represent the vectorization of matrix M.

We commence with the proof of Theorem 3.2. For the convenience of the reader the theorem is restated below.
Theorem 3.2 (Accelerated Φ-Regret Minimization). Consider a κ-stable (α, β)-predictive regret minimizer RΦ for a set of
linear transformations Φ with respect to the norm ∥ · ∥1. Moreover, assume that RΦ is fixed point G-stable with respect to Φ.
Then, if we have access to a STABLEFPORACLE, we can construct a G-stable algorithm with Φ-regret RT bounded as

RT ≤ α(T ) + 2βD2
ℓκ

2T + 2β

T∑
t=1

∥ℓt − ℓt−1∥2∞ +Dℓ

T∑
t=1

ϵt,

where ϵt is the error of STABLEFPORACLE at time t, and Dℓ is an upper bound on the ℓ∞ norm of ℓt’s. It is also assumed that
∥x∥∞ ≤ 1 for all x ∈ X .

Proof. Fix some iteration t ≥ 2. The first step is to obtain the next strategy of RΦ: ϕt = RΦ. NEXTSTRATEGY(). Then, our
regret minimizer R will simply output the strategy xt such that xt = STABLEFPORACLE(ϕt;xt−1, G, ϵt).3 By assumption
(recall Definition 3.1) we know that this is indeed well-defined, and xt will be such that (i) ∥ϕt(xt) − xt∥ ≤ ϵt, and (ii)
∥xt − xt−1∥ ≤ G. This immediately implies thatR will be G-stable.

Afterwards, we receive feedback from the environment in the form of a utility vector ℓt. This is used to construct the utility
function Lt : ϕ 7→ ⟨ℓt, ϕ(xt)⟩; we will let Lt = (ℓt ⊗ xt)♭ be the corresponding utility vector. Then, this function is given as
feedback to RΦ; that is, we invoke the subroutine RΦ. OBSERVEUTILITY(Lt). As a result, the (external) regret of RΦ can be
expressed as

RT
Φ = max

ϕ∗∈Φ

T∑
t=1

⟨ℓt, ϕ∗(xt)⟩ −
T∑

t=1

⟨ℓt, ϕt(xt)⟩.

In particular, if RT is the Φ-regret ofR, we have that

RT −RT
Φ =

T∑
t=1

⟨ℓt, ϕt(xt)⟩ −
T∑

t=1

⟨ℓt,xt⟩ =
T∑

t=1

⟨ℓt, ϕt(xt)− xt⟩

≤
T∑

t=1

∥ℓt∥∗∥ϕt(xt)− xt∥ ≤ Dℓ

T∑
t=1

ϵt, (8)

where we used the Cauchy-Schwarz inequality, as well as the fact that ∥ϕt(xt) − xt∥ ≤ ϵt. Next, we will bound the term
∥Lt −Lt−1∥∞ in terms of ∥ℓt − ℓt−1∥∞. To this end, it follows that

3For t = 1 it suffices to return any xt such that x1 = ϕ1(x1).



∥Lt −Lt−1∥2∞ = ∥(ℓt ⊗ xt)♭ − (ℓt−1 ⊗ xt−1)♭∥2∞
= ∥(ℓt ⊗ xt)♭ − (ℓt−1 ⊗ xt)♭ + (ℓt−1 ⊗ xt)♭ − (ℓt−1 ⊗ xt−1)♭∥2∞
= ∥((ℓt − ℓt−1)⊗ xt)♭ + (ℓt−1 ⊗ (xt − xt−1))♭∥2∞
≤ 2∥((ℓt − ℓt−1)⊗ xt)♭∥2∞ + 2∥(ℓt−1 ⊗ (xt − xt−1))♭∥2∞ (9)

= 2∥ℓt − ℓt−1∥2∞∥xt∥2∞ + 2∥ℓt−1∥2∞∥xt − xt−1∥2∞ (10)

≤ 2∥ℓt − ℓt−1∥2∞ + 2D2
ℓκ

2, (11)

where we used the triangle inequality together with Young’s inequality in (9), the property that ∥(w ⊗ z)♭∥∞ = ∥w∥∞∥z∥∞
in (10), and the stability property ∥xt−xt−1∥∞ ≤ ∥xt−xt−1∥1 ≤ κ in (11). As a result, if we plug-in (11) to (8) and we use
the (α, β)-predictivity ofRΦ we can conclude that

RT ≤ α(T ) +Dℓ

T∑
t=1

ϵt + β

T∑
t=1

(
2∥ℓt − ℓt−1∥2∞ + 2D2

ℓκ
2
)

= α(T ) + 2βD2
ℓκ

2T +Dℓ

T∑
t=1

ϵt + 2β

T∑
t=1

∥ℓt − ℓt−1∥2∞,

concluding the proof.

B.1 Proofs for Section 3.1
In this section we present all the omitted proofs from Section 3.1. We commence with the proof of Proposition 3.3, established
via Algorithm 2. We note that a similar construction appears in (Farina et al. 2021).

Proposition 3.3. Consider a player i ∈ [n] and any trigger sequence σ̂ = (j, a) ∈ Σ
(i)
∗ . There exists an algorithm which

constructs a deterministic regret minimizer R(i)
σ̂ with access to a K-stable (A,B)-predictive deterministic regret minimizer

R(i)
Q for the set Q(i)

j , such thatR(i)
σ̂ is K-stable and (A,B)-predictive.

Proof. As suggested in Algorithm 1, let us consider the linear function g
(i),t
σ̂ : R|Σ

(i)
j | ∋ x 7→ Lt(h

(i)
σ̂ (x))− Lt(h

(i)
σ̂ (0)), with

gt
σ̂ ∈ R|Σ

(i)
j | being the corresponding canonical vector of this function. In Algorithm 1 the observed utility function Lt at time

t is used to construct g(i),tσ̂ , and the latter linear function is given as input toR(i)
Q . As a result, it follows that

sup
ϕ∗∈Ψ(i)

σ̂

T∑
t=1

Lt(ϕ∗)−
T∑

t=1

Lt
(
ϕ
(i)

σ̂→qt
σ̂

)
= sup

q∗
σ̂∈Q

(i)
j

T∑
t=1

g
(i),t
σ̂ (q∗σ̂)−

T∑
t=1

g
(i),t
σ̂ (qt

σ̂).

That is, the cumulative regret incurred by R(i)
σ̂ under the sequence of utility functions L1, . . . , LT is equal to the regret

incurred by R(i)
Q under the sequence of utility functions g(i),tσ̂ . As a result, if we invoke the (A,B)-predictive assumption for

the regret minimizerR(i)
Q , we can infer that the cumulative regret RT ofR(i)

σ̂ can be bounded as

RT ≤ A(T ) +B

T∑
t=1

∥g(i),t
σ̂ − g

(i),t−1
σ̂ ∥2∞ ≤ A(T ) +B

T∑
t=1

∥Lt −Lt−1∥2∞,

where the bound follows from the fact that g(i),t
σ̂ = (Lt[σr, σ̂])σr⪰j . It is also direct to verify that the stability is preserved

since ∥(M(i)

σ̂→qt
σ̂
)♭− (M

(i)

σ̂→qt−1
σ̂

)♭∥1 = ∥qt
σ̂−qt−1

σ̂ ∥1 ≤ K, by K-stability ofR(i)
Q . Finally, the claim regarding the complexity

of Algorithm 1 follows directly given that we can store the vector g(i),t
σ̂ in O(|Σ(i)

j |) time.

Next, we conclude the construction by combining the individual regret minimizers using a regret circuit for the convex hull,
leading to Theorem 3.4; the statement of the theorem is included below for convenience.

Theorem 3.4. Consider a κ-stable (α, β)-predictive regret minimizer R(i)
∆ for the the simplex ∆|Σ

(i)
∗ |, and K-stable (A,B)-

predictive regret minimizers R(i)
σ̂ for each σ̂ ∈ Σ

(i)
∗ , all with respect to the pair of norms (∥ · ∥1, ∥ · ∥∞). Then, there exists



Algorithm 1: Stable-Predictive Regret MinimizerR(i)
σ̂ for the set Ψ(i)

σ̂

Input:
• Player i ∈ [n]

• A trigger sequence σ̂ = (j, a) ∈ Σ
(i)
∗

• A (deterministic) K-stable (AT , B)-predictive regret minimizerR(i)
Q for Q(i)

j

1 function NEXTSTRATEGY():
2 qt

σ̂ ← R
(i)
Q . NEXTSTRATEGY()

3 return ϕ
(i)

σ̂←qt
σ̂

4 function OBSERVEUTILITY(Lt):
5 Construct the linear function g

(i),t
σ̂ : R|Σ

(i)
j | ∋ x 7→ Lt(h

(i)
σ̂ (x))− Lt(h

(i)
σ̂ (0))

6 R(i)
Q . OBSERVEUTILITY(g

(i),t
σ̂ )

an algorithm which constructs a regret minimizer R(i)
Ψ for the set coΨ(i) such that (i) R(i)

Ψ is O(K + |Σ(i)|κ)-stable, and (ii)
under any sequence of utility vectors L1, . . . ,LT the regret incurred can be bounded as

RT
Ψ ≤ O(α(T )+A(T ) + βD2

LK
2T )

+O(B + β|Σ(i)|2)
T∑

t=1

∥Lt −Lt−1∥2∞,

where ∥Lt∥∞ ≤ DL for all t ≥ 1.
For the proof we will employ the following construction.

Proposition B.1 ((Farina, Kroer, and Sandholm 2019c)). Consider a collection of sets X1, . . . ,Xm, and let Ri be a regret
minimizer for the set Xi, for each i ∈ [m]. Moreover, let R∆ be a regret minimizer for the m-simplex ∆m. A regret minimizer
Rco for the set co{X1, . . . ,Xm} can be constructed as follows:

• Rco. NEXTSTRATEGY obtains the next strategy xt
i of each regret minimizer Ri, as well as the next strategy λt =

(λt
1, . . . ,λ

t
m) ∈ ∆m ofR∆, and returns the strategy λt

1x
t
1 + · · ·+ λt

mxt
m.

• Rco. OBSERVEUTILITY(Lt) forwards the function Lt to each of the regret minimizersR1, . . . ,Rm, while it also forwards
the utility (λ1, . . . ,λm) 7→ λ1L

t(xt
1) + · · ·+ λmLt(xt

m).
Then, if RT

1 , . . . , R
T
m is the regret accumulated by the regret minimizers R1, . . . ,Rm, and RT

∆ is the regret of R∆, then the
cumulative regret of the composite regret minmizersRco can be bounded as

RT
co ≤ RT

∆ +max{RT
1 , . . . , R

T
m}. (12)

In our setting, this proposition can be cast in the form of Algorithm 2. We are now ready to show Theorem 3.4.

Proof of Theorem 3.4. First of all, Proposition B.1 implies that the accumulated regret of the regret circuit for the convex hull
can be bounded as

RT
Ψ ≤ α+A(T ) +B

T∑
t=1

∥Lt −Lt−1∥2∞ + β

T∑
t=1

∥Λt −Λt−1∥2∞, (13)

where we used the fact that each regret minimizer R(i)
σ̂ obtains as input the same utility function as R(i)

Ψ , while we also used
the notation Λt ∈ R|Σ(i)

∗ | to represent the utility function given to R(i)
∆ in accordance to Proposition B.1. Next, let us focus on

bounding the norm ∥Λt −Λt−1∥2∞; in particular, it follows that for some index s ∈ {1, . . . , |Σ(i)
∗ |},

∥Λt −Λt−1∥2∞ =
(
⟨Lt,xt

s⟩ − ⟨Lt−1,xt−1
s ⟩

)2
(14)

=
(
⟨Lt,xt

s⟩ − ⟨Lt−1,xt
s⟩+ ⟨Lt−1,xt

s⟩ − ⟨Lt−1,xt−1
s ⟩

)2
=
(
⟨Lt −Lt−1,xt

s⟩+ ⟨Lt−1,xt
s − xt−1

s ⟩
)2

≤ 2
(
⟨Lt −Lt−1,xt

s⟩
)2

+ 2
(
⟨Lt−1,xt

s − xt−1
s ⟩

)2
(15)

≤ 2∥Lt −Lt−1∥2∞∥xt
s∥21 + 2∥Lt−1∥2∞∥xt

s − xt−1
s ∥21 (16)

≤ 8∥Lt −Lt−1∥2∞|Σ(i)|2 + 2D2
LK

2, (17)



where (14) follows from the definition of the ℓ∞ norm; (15) uses Young’s inequality; (16) is an application of Cauchy-Schwarz;
and (17) uses the fact that ∥xt

s∥1 ≤ 2|Σ(i)|. As a result, if we plug the bound of Equation (17) to (13) we can conclude that

RT
Ψ ≤ α+A(T ) + (B + 2βD2

x)

T∑
t=1

∥Lt −Lt−1∥2∞ + 2βD2
LK

2T. (18)

Moreover, regarding the stability of the composite regret minimizer we observe that∥∥∥∥∥∥
|Σ(i)

∗ |∑
k=1

λt
kx

t
k −

|Σ(i)
∗ |∑

k=1

λt−1
k xt−1

k

∥∥∥∥∥∥
1

≤
|Σ(i)

∗ |∑
k=1

∥λt
kx

t
k − λt−1

k xt−1
k ∥1

≤
|Σ(i)

∗ |∑
k=1

∥λt
kx

t
k − λt

kx
t−1
k + λt

kx
t−1
k − λt−1

k xt−1
k ∥1 (19)

≤
|Σ(i)

∗ |∑
k=1

(
∥λt

kx
t
k − λt

kx
t−1
k ∥1 + ∥λt

kx
t−1
k − λt−1

k xt−1
k ∥1

)
≤
|Σ(i)

∗ |∑
k=1

λt
k∥xt

k − xt−1
k ∥1 +

|Σ(i)
∗ |∑

k=1

∥xt−1
k ∥1|λt

k − λt−1
k |

≤ K + 2|Σ(i)|∥λt − λt−1∥1 (20)

≤ K + 2|Σ(i)|κ, (21)

where we used the triangle inequality in (19), the ℓ1 stability of the sequence (xt
k) in (20), and the ℓ1 stability of (λt) in (21).

This verifies our claim about the stability and the predictivity ofR(i)
Ψ . Finally, the complexity analysis for the NEXTSTRATEGY

function follows directly since the NEXTSTRATEGY operation of each individual regret minimizer runs in O(|Σ(i)|), while the
analysis of the OBSERVEUTILITY routine follows similarly to (Farina et al. 2021, Theorem 4.6), and it is therefore omitted.

Algorithm 2: Stable-Predictive Regret MinimizerR(i)
Ψ for the set coΨ(i)

Input:
• Player i ∈ [n]

• A K-stable (AT , B)-predictive regret minimizerR(i)
σ̂ for Ψ(i)

σ̂ , for each σ̂ ∈ Σ
(i)
∗

• A deterministic κ-stable (α, β)-predictive regret minimizerR(i)
∆ for ∆|Σ

(i)
∗ |

1 Function NEXTSTRATEGY():
2 λt ← R(i)

∆ . NEXTSTRATEGY()

3 for σ̂ ∈ Σ
(i)
∗ do

4 ϕσ̂→qt
σ̂
← R(i)

σ̂ . NEXTSTRATEGY()

5 return
∑

σ̂∈Σ(i)
∗

λt[σ̂]ϕσ̂→qt
σ̂

represented implicitly as {λt[σ̂], qt
σ̂}σ̂∈Σ(i)

∗

6 Function OBSERVEUTILITY(Lt):
7 for σ̂ ∈ Σ

(i)
∗ do

8 R(i)
σ̂ . OBSERVEUTILITY(Lt)

9 Construct the linear function ℓtλ : λ 7→
∑

σ̂∈Σ(i)
∗

λ[σ̂]Lt
(
ϕσ̂→qt

σ̂

)
10 R(i)

∆ . OBSERVEUTILITY(ℓtλ)

B.2 Proofs for Section 3.2
We commence this section with the proof that OMWU guarantees multiplicative-stability.
Lemma B.2 (Multiplicative Stability of OMWU on the Simplex). Consider the OMWU algorithm on the simplex ∆m with
learning rate η > 0. If all the utility functions ℓt ∈ Rm are such that ∥ℓt∥∞ ≤ L, and η < 1/(12L), then the sequence (xt)t≥2
produced by OMWU is (12ηL)-multiplicatively-stable.



Proof. It is well-known that the update rule of OMWU on the simplex has the following form:

xt
i =

e2ηℓ
t−1
i −ηℓt−2

i∑m
k=1 e

2ηℓt−1
k −ηℓt−2

k xt−1
k

xt−1
i ,

for t ≥ 2. As a result, it follows that

xt
i ≤

e3ηL∑m
k=1 e

−3ηLxt−1
k

xt−1
i = e6ηLxt−1

i ≤ (1 + 12ηL)xt−1
i ,

where we used that ℓt−1i , ℓt−2 ∈ [−L,L], the fact that xt−1 ∈ ∆m, and that ex ≤ 1 + 2x, for all x ∈ [0, 1/2]. Similarly, we
have that

xt
i ≥

e−3ηL∑m
k=1 e

3ηLxt−1
k

xt−1
i = e−6ηLxt−1

i ≥ (1− 6ηL)xt−1
i .

Proof of Lemma 3.5. Let us start with the regret minimizerR(i)
∆ . By Lemma B.2 it suffices to bound the ℓ∞ norm of the utility

vectors. In particular, if Λ is the associated utility vector predicted from Proposition B.1, it follows that ∥Λ∥∞ = |⟨L,xk⟩| ≤
∥L∥∞∥xk∥1 = O(DL|Σ(i)|), for some k ∈ {1, . . . , |Σ(i)

∗ |}, where we used the (generalized) Cauchy–Schwarz inequality, and
the fact that ∥xk∥1 = O(|Σ(i)|). Moreover, for Lt = (ℓt ⊗ xt)♭ and ∥xt∥∞ ≤ 1 it follows that DL ≤ Dℓ, and the claimed
bound follows directly from Lemma B.2. Finally, for each regret minimizer Rσ̂ the multiplicative-stability bound can only be
a factor of D(i) from the derived bound in Theorem A.4, concluding the proof.

Next, we focus on the proof of Theorem 3.11. To this end, we leverage the approach of Kruckman, Greenwald, and Wicks
(2010), who provided an alternative proof of the classic Markov chain tree theorem using linear-algebraic techniques. We
commence by stating some elementary properties of the determinant.

Fact B.3. The following properties hold:
• The determinant is a multilinear function with respect to the rows and columns of the matrix. That is,

det(u1, . . . , αuk + βu′k, . . . ,um) = α det(u1, . . . ,uk, . . . ,um) + β det(u1, . . . ,u
′
k, . . . ,um),

for any u1, . . . ,um ∈ Rm, u′k ∈ Rm, and α, β ∈ R;
• If any two rows or columns of a square matrix A are equal, then det(A) = 0;
• The determinant remains invariant under permutations.

Given a matrix A, the minor mn(i,j)(A) is the matrix formed from A after deleting the i-th row and the j-th column. Then,
the cofactor is defined as co(i,j)(A) = (−1)i+j det

(
mn(i,j)(A)

)
, while the adjugate (or adjoint) matrix adj(A)⊤ is the matrix

with entries the corresponding cofactors of A; that is, adj(A)[(i, j)] := co(j,i)(A). With this notation at hand, we are ready to
state the following characterization due to (Kruckman, Greenwald, and Wicks 2010, Theorem 3.4):

Theorem B.4 ((Kruckman, Greenwald, and Wicks 2010)). Consider an ergodic m-state Markov chain with transition matrix
M. If x ∈ Rm is such that xi := adj(L)[(i, i)], where L := M− Im is the Laplacian of the system, x is an eigenvector of M
with a corresponding eigenvalue of 1. That is, Mx = x.

An key step of our proof for Theorem 3.11 uses this theorem in order to characterize the stationary distribution of a certain
(ergodic) Markov chain. Incidentally, an alternative characterization can be provided using the classic Markov chain tree
theorem. In particular, a central component of the latter theorem is the notion of a directed tree:

Definition B.5 (Directed Tree). A graph G = (V,E) is said to be a directed tree rooted at u ∈ V if (i) it does not contain any
cycles, and (ii) u has no outgoing edges, while every other node has exactly one outgoing edge.

We will represent withDi the set of all graphs which have property (ii) with respect to a node i ∈ [m]. Moreover, we will use
Ti to represent the subset of Di which also has property (i) of Definition B.5. For a matrix D ∈ Di, we define a matrix mp(D)
so that mp(D)(j,k) = 1 if (k, j) ∈ E(D), and 0 otherwise. The following lemma will be of particular use for our purposes:

Lemma B.6 ((Kruckman, Greenwald, and Wicks 2010)). Consider some m×m matrix D ∈ Di, and let Ri be the determinant
of the Laplacian matrix L := mp(D) − I after replacing the i-th column with the i-th standard unit vector ei. Then, Ri =
(−1)m−1 if D ∈ Ti, i.e. D contains no (directed) cycles. Otherwise, Ri = 0.

Before we proceed with the technical proof of Lemma 3.8, we also state a useful elementary fact.

Fact B.7. The adjugate matrix at (i, i) is equal to the determinant of A after we replace the i-th column with the vector ei.



Lemma 3.8. Let M be the transition matrix of an m-state Markov chain such that M := v1⊤ +C, where C is a matrix with
strictly positive entries and columns summing to 1− λ, and v is a vector with strictly positive entries summing to λ. Then, if π
is the stationary distribution of M, there exists, for each i ∈ [m], a (non-empty) finite set Fi and F =

⋃
i Fi, and corresponding

parameters bj ∈ {0, 1}, 0 ≤ pj ≤ m− 2, |Sj | = m− pj − bj − 1, for each j ∈ Fi, such that

πi =

∑
j∈Fi

λpj+1(v[qj ])
bj
∏

(s,w)∈Sj
C[(s, w)]∑

j∈F Cjλpj+bj
∏

(s,w)∈Sj
C[(s, w)]

,

where Cj = Cj(m) is a positive constant.

Proof. Let us consider the Laplacian matrix L = M − Im, and the quantities Σi := adj(L)[(i, i)]. We shall first characterize
the structure of Σi’s. By symmetry, we can focus without loss of generality on the term Σ1. We know from Fact B.7 that Σ1

can be expressed as
Σ1 = det(e1,v + c2 − e2, . . . ,v + cm − em), (22)

where cj represents the j-th column of C. Now if ej,k := ej − ek, given that M is column-stochastic, we observe that

ej − v − cj =

m∑
k=1

(ej − ek)v[k] +

m∑
k=1

(ej − ek)cj [k] =

m∑
k=1

ej,kv[k] +

m∑
k=1

ej,kcj [k].

Next, if we plug-in this expansion to (22) it follows that

Σ1 = det

(
e1,

m∑
k=1

ek,2v[k] +

m∑
k=1

ek,2c2[k], . . . ,

m∑
k=1

ek,mv[k] +

m∑
k=1

ek,mcm[k]

)
. (23)

By multilinearity of the determinant (Fact B.3), Σ1 can be expressed as the sum of terms, with a single term of the form

det

(
e1,

m∑
k=1

ek,2c2[k], . . . ,

m∑
k=1

ek,mcm[k]

)
, (24)

independent on v, while any other term can be expressed in the form

det

(
e1, z2, . . . ,

m∑
k=1

ek,jv[k], . . . ,zm

)
, (25)

for some index j, where zℓ is either
∑m

k=1 ek,ℓv[k] or
∑m

k=1 ek,ℓcℓ[k]. Now let us first analyze each term of (25). We will
show that it can be equivalently expressed so that the vector v appears only in a single column. Indeed, consider any other
column in the matrix involved in the determinant of (25), expressed in the form

∑m
k=1 ek,ℓv[k], for some index ℓ ̸= j, if such

column exists. Then, if we subtract the j-th column from that column it would take the form
m∑

k=1

ek,ℓv[k]−
m∑

k=1

ek,jv[k] =

m∑
k=1

(ej − eℓ)v[k] = λej,ℓ,

where recall that λ is the sum of the entries of vector v, while this operation does not modify the value of the determinant.
Thus, by multinearity, the determinant (25) is equal to

λp det

(
e1, z

′
2, . . . ,

m∑
k=1

ek,jv[k], . . . ,z
′
m

)
, (26)

where z′ℓ is either
∑m

k=1 ek,ℓcℓ[k] or ej,ℓ, and 0 ≤ p ≤ m − 2. Next, if we use again the multilinearity property, the term in
(26) can be expressed as a sum of terms each of which has the formλpv[q]

∏
(s,w)∈S

C[(s, w)]

 det(e1, e·,2, . . . , e·,m),

where |S| = m−p−2. (For notational simplicity we used the notation e·,2, . . . , e·,m to hide the first index.) Thus, the induced
determinant det(e1, e·,2, . . . , e·,m) matches after a suitable permutation the form of Lemma B.6 associated with some matrix
D ∈ Di. As a result, it can either be 0 or (−1)m−1, depending on whether the corresponding graph has a (directed) cycle.
Similar reasoning applies for the determinant in (24), which can be expressed as a sum of terms

(−1)m−1
∏

(s,w)∈S

C[(s, w)],



where |S| = m− 1. Overall, we have shown that each Σi (due to symmetry) can be expressed in the form

(−1)m−1
∑
j∈Fi

λpj (v[qj ])
bj

∏
(s,w)∈Sj

C[(s, w)], (27)

where for all j it holds that bj ∈ {0, 1}, and |Sj | = m − pj − bj − 1. Next, we will focus on characterizing the term
Σ :=

∑m
i=1 Σi. In particular, the stationary distribution π of M is such that(

C+ v1⊤
)
π = π ⇐⇒ Cπ + v = π ⇐⇒ (Im −C)π = v, (28)

where we used that 1⊤π = 1 since π ∈ ∆m. Moreover, we claim that the matrix Im − C is invertible. Indeed, the sum of
the columns of C is 1− λ, and subsequently it follows that the maximum eigenvalue of C is (1− λ). In turn, this implies that
all the eigenvalues of Im − C are at least λ > 0. As a result, we can use Cramer’s rule to obtain an explicit formula for the
solution of the linear system with respect to the first coordinate of π:

π1 =
det(v, e2 − c2, . . . , em − cm)

det(e1 − c1, e2 − c2, . . . , em − cm)
. (29)

Moreover, it follows that

det(v, e2 − c2, . . . , em − cm) = det(v, e2 − c2 − v, . . . , em − cm − v)

= det(v + (λe1 − v), e2 − c2 − v, . . . , em − cm − v) (30)
= λdet(e1, e2 − c2 − v, . . . , em − cm − v),

where in (30) we used the fact that det(λe1 − v, . . . , em − cm − v) = 0. Thus, if we use the definition of Σ1, Fact B.7, and
(29), we arrive at the following conclusion:

π1 = λ
Σ1

det (Im −C)
.

But we can also infer from Theorem B.4 that π1 = Σ1/Σ, implying the following identity:

det(Im −C) = λ

m∑
i=1

Σi. (31)

In fact, we have shown this formula for any vector λp, where p is a probability distribution, and λ > 0. Thus, it must also hold
for v := λ

m1. That is,
det(Im −C) = λ(−1)m−1

∑
j∈F

Cjλ
pj+bj

∏
(s,w)∈Sj

C[(s, w)], (32)

where |Sj | ≤ m− 1− pj , Cj = Cj(m) is a positive parameter independent on the entries of v and C, and F =
⋃

i Fi. Finally,
given that the vector π ∈ ∆m with πi = Σi/Σ is the (unique) stationary distribution of M, the claim follows directly from
(27), (31), and (32).

Corollary B.8. Let M be the transition matrix of an m-state Markov chain such that M := v1⊤+C, where C is a matrix with
strictly positive entries and columns summing to 1− λ, and v is a vector with strictly positive entries summing to λ. Moreover,
let v = r/l, for some l > 0. Then, if π is the stationary distribution of M, there exists, for each i ∈ [m], a (non-empty) finite
set Fi and F =

⋃
i Fi, and corresponding parameters bj ∈ {0, 1}, 0 ≤ pj ≤ m− 2, |Sj | = m− pj − bj − 1, for each j ∈ Fi,

such that the i-th coordinate of the vector w := lπ can be expressed as

wi =

∑
j∈Fi

λpj+1(r[qj ])
bj l1−bj

∏
(s,w)∈Sj

C[(s, w)]∑
j∈F Cjλpj+bj

∏
(s,w)∈Sj

C[(s, w)]
, (33)

where Cj = Cj(m) is a positive constant.

Proof. The proof follows directly from the formula derived in Lemma 3.8.

This expression for the stationary distribution was derived specifically to characterize the multiplicative stability of the fixed
points associated with EFCE. In particular, this will be shown directly from Corollary 3.9, which is recalled next.
Corollary 3.9. Let M,M′ be the transition matrices of m-state Markov chains such that M = v1⊤+C and M′ = v′1⊤+C′,
where C and C′ are matrices with strictly positive entries, and v,v′ are vectors with strictly positive entries such that v = r/l
and v′ = r′/l′, for some l > 0 and l′ > 0. If π and π′ are the stationary distributions of M and M′, let w := lπ and
w′ := l′π′. Finally, let λ and λ′ be the sum of the entries of v and v′ respectively. Then, if (i) the matrices C and C′ are
κ-multiplicative-close; (ii) the scalars λ and λ′ are κ-multiplicative-close; (iii) the vectors r and r′ are γ-multiplicative-close;
and (iv) the numbers l and l′ are also γ-multiplicative-close, then the vectors w and w′ are (γ+O(κm))-multiplicative-close,
for a sufficiently small κ = O(1/m).



Proof. Consider some coordinate i ∈ [m], and let

Vj := λpj+1(r[qj ])
bj l1−bj

∏
(s,w)∈Sj

C[(s, w)],

for some j ∈ Fi. Also let V ′j be the corresponding quantity with respect to M′. Then, by assumption we have that

V ′j ≤ (1 + κ)pj+1(1 + γ)(1 + κ)|Sj |Vj ≤ (1 + γ)(1 + κ)mVj ,

where we used the fact that |Sj |+ pj + 1 ≤ m by Corollary B.8. Moreover, for a sufficiently small κ = O(1/m), we can infer
that V ′j ≤ (1+γ)(1+O(κm))V ′j = (1+(γ+O(κm)))Vj . Thus, this implies that

∑
j∈Fi

V ′j ≤ (1+(γ+O(κm)))
∑

j∈Fi
V ′j .

Moreover, we can show that the denominator of (33) induces an extra additive factor of O(κm) in the multiplicative stability,
implying that w′i ≤ (1 + (γ +O(κm)))wi, for any i ∈ [m]. Similarly, it follows that w′i ≥ (1− (γ +O(κm)))wi.

Next, we will use this statement to prove Proposition 3.10. We note that it is tacitly assumed that the vectors λt, qt
σ̂ , and

x(j∈J), involved in Proposition 3.10 have strictly positive coordinates; this will be indeed the case when OMWU is used to
construct the individual (local) regret minimizers.

Proof of Proposition 3.10. Let us focus on the stability analysis of Algorithm 3 as the rest of the claim follows from (Farina
et al. 2021, Proposition 4.14). In particular, for consistency with the terminology of Corollary 3.9, let us define

C[(ar, ac)] := λ[(j∗, ac)]q(j∗,ac)[(j
∗, ar)] +

1−
∑

σ̂⪯(j∗,ac)

λ[σ̂]

1{ar = ac};

and l := x[σp]. We will show that the requirements of Corollary 3.9 are satisfied:
(i) The entries of C are O(κ)-multiplicatively-stable. In particular, this follows from the fact that 1 −

∑
σ̂⪯(j∗,ac)

λ[σ̂] =∑
σ̃∈Σ̃ λ[σ̃], and the latter term is clearly κ-multiplicatively-stable;

(ii) The sum of the entries of vt := rt/lt is κ-multiplicatively-stable. To see this, note that the sum of each column of C
can be expressed as

∑
σ̃∈Σ̃ λ[σ̃], and as a result, since the matrix C + 1

l r1
⊤ is stochastic, we can infer that the sum of

the entries of v can also be expressed as
∑

σ̃∈Σ̃ λ[σ̃], since λ is a vector on the simplex. But the latter term is clearly
κ-multiplicatively-stable, as desired;

(iii) The sequence of vectors rt is γ +O(κ)-multiplicatively-stable. This assertion can be directly verified from the definition
of r in Algorithm 3;

(iv) The sequence of numbers of lt is γ-multiplicatively-stable. Indeed, this follows directly from the assumption that the
sequence of xt’s is γ-multiplicatively-stable.

As a result, we can apply Corollary 3.9 to conclude the proof.

Proof of Theorem 3.11. Our argument proceeds inductively. For a root information set j ∈ J (i), Proposition 3.10 implies
O(κ|A|)-multiplicative-stability for any induced partial fixed point; this follows given that the ∅-partial fixed point is trivially
0-multiplicatively-stable. Next, the theorem follows inductively given that by Proposition 3.10 each sequence can only incur
an additive factor of O(κ|A|) in the multiplicative stability bound with respect to the preceding sequences.

More precisely, if F (i) := maxj1≺j2≺···≺jd
∑d

i=1 |A(ji)|, with j1, . . . , jd ∈ J (i), we can show that the sequence of fixed
points is O(κF (i))-multiplicatively-stable. Observe that F (i) can be trivially upper bounded by |A(i)|D(i), as well as the
number of sequences |Σ(i)|.

B.3 Putting Everything Together
First of all, if we combine Theorem A.4 with Theorem 3.4, instantiating the regret minimizer R(i)

∆ of Theorem 3.4 using
OMWU with learning rate η, we can construct a regret minimizer for the set coΨ(i) with regret RT

Ψ bounded as

RT
Ψ ≤

P(i)

η
+ η3D4

ℓV(i)T + ηB(i)
T∑

t=1

∥Lt −Lt−1∥2∞, (34)

where P(i),V(i), and B(i) are game-specific parameters polynomial on the size of the game, and independent of T and η; and
Dℓ is an upper bound on the ℓ∞ norm of the utility sequences. In addition, this regret minimizer will be (ηK(i))-stable, for
a game-specific parameter K(i) polynomial on the size of the game, and independent on η and T . Thus, this stable-predictive
regret minimizer for the set of transformations Ψ(i) realizes the first requirement of Theorem 3.2.

Moreover, let ηG(i) be the parameter associated with the stability of the fixed points, as predicted by Corollary 3.12, for
some game-specific parameter G(i) polynomial on the size of the game, and independent on η and T . Now observe that this
component realizes the STABLEFPORACLE; the second requirement of Theorem 3.2. As a result, we can apply Theorem 3.2
to conclude the following:



Algorithm 3: EXTEND(ϕ, J, j∗,x); (Farina et al. 2021)
Input:

• ϕ =
∑

σ̂∈Σ(i)
∗

λ[σ̂]ϕ
(i)
σ̂→qσ̂

∈ coΨ(i)

• J ⊆ J (i) trunk for player i
• j∗ ∈ J (i) information set not in J with an immediate predecessor in J

• x ∈ R|Σ
(i)|

≥0 J-partial fixed point of ϕ

Output: x′ ∈ R|Σ
(i)|

≥0 (J ∪ {j∗})-partial fixed point of ϕ
1 σp ← σ(i)(j∗)

2 Let r ∈ R|A(j∗)|
≥0 be defined as r[a] :=

∑
j′⪯σp

∑
a′∈A(j′) λ[(j

′, a′)]q(j′,a′)[(j
∗, a)]x[(j′, a′)]

3 Let W ∈ x[σp]S|A(j∗)| be the matrix with entries W[ar, ac] defined, for ar, ac ∈ A(j∗), as

r[ar] +
(
λ[(j∗, ac)]q(j∗,ac)[(j

∗, ar)] +
(
1−

∑
σ̂⪯(j∗,ac)

λ[σ̂]
)
1{ar = ac}

)
x[σp]

4 if x[σp] = 0 then
5 w ← 0 ∈ R|A(j∗)|

≥0
6 else
7 b ∈ ∆|A(j∗)| ← stationary distribution of 1

x[σp]
W

8 w → x[σp]b
9 x′ ← x

10 for a ∈ A(j∗) do
11 x′[(j∗, a)]← w[(j∗, a)]

Algorithm 4: FIXEDPOINT(ϕ); (Farina et al. 2021)

Input: ϕ =
∑

σ̂∈Σ(i)
∗

λ[σ̂]ϕ
(i)
σ̂→qσ̂

∈ coΨ(i)

Output: q∗ ∈ Q(i) such that q = ϕ(q∗)

1 q ← 0 ∈ R|Σ(i)|, q[∅]← ∅
2 J ← ∅
3 for j ∈ J (i) in top-down order do
4 q∗ ← EXTEND(ϕ, J, j, q∗)
5 J = J ∪ {j}
6 return q

Corollary B.9. Consider any player i ∈ [n]. There exists a regret minimizing algorithm such that under any sequence of utility
vectors ℓ1, . . . , ℓT , with ℓ∞ norm bounded by Dℓ, the accumulated Ψ(i)-regret RT can be bounded as

RT ≤ P
(i)

η
+ η3D4

ℓV(i)T + ηB(i)
T∑

t=1

∥ℓt − ℓt−1∥2∞. (35)

In addition, the regret minimizer is ηG(i)-stable, for a sufficiently small learning rate η. All of the parameters P(i),V(i),B(i),
and G(i) are game-specific parameters, polynomial on the size of the game, and independent on η and T .

We note that the parameters appearing in this corollary are in general different from the ones in (34), and we use the same
symbols with an abuse of notation. So far we have focused on bounding the regret of a player without any assumptions on
the observed utility functions. A crucial observation is that if all players employ a regularized (or smooth) learning algorithm,
then the observed utility functions change slowly over time. To formalize this observation, we start with the following auxiliary
claim:

Claim B.10. For any player i ∈ [n] the observed utilities satisfy

∥ℓ(i),t − ℓ(i),t−1∥∞ ≤ |Z|
n∑

k ̸=i

∥q(k),t − q(k),t−1∥1. (36)



Proof. For a profile of mixed sequence-form strategies (q(1), . . . , q(n)), the utility of player i can be expressed as

u(i)(q(1), . . . , q(n)) =
∑
z∈Z

p(c)(z)u(i)(z)

n∏
k=1

q(k)(σ(k)(z)).

As a result, given that (by assumption) |u(i)(z)| ≤ 1 for all z ∈ Z , it follows that

∥ℓ(i),t − ℓ(i),t−1∥∞ ≤
∑
z∈Z

∣∣∣∣∣∣
n∏

k ̸=i

q(k),t(σ(k)(z))−
n∏

k ̸=i

q(k),t−1(σ(k)(z))

∣∣∣∣∣∣
≤
∑
z∈Z

n∑
k ̸=i

∣∣∣q(k),t(σ(k)(z))− q(k),t−1(σ(k)(z))
∣∣∣ , (37)

where in the last bound we used the inequality

|(a1a2 . . . am)− (b1b2 . . . bm)| ≤
m∑
i=1

|ai − bi|(a1 . . . ai−1)(bi+1 . . . bm) ≤
m∑
i=1

|ai − bi|,

for any a1, . . . , am, b1, . . . , bm ∈ [0, 1]. Finally, from (37) we can conclude that

∥ℓ(i),t − ℓ(i),t−1∥∞ ≤
n∑

k ̸=i

∑
z∈Z

∣∣∣q(k),t(σ(k)(z))− q(k),t−1(σ(k)(z))
∣∣∣ ≤ |Z| n∑

k ̸=i

∥q(k),t − q(k),t−1∥1,

as desired.

As a result, if all players employ a stable algorithm to update their strategies, the observed utilities will also be stable. This
leads to the following conclusion:

Corollary B.11. Assume that all agents play according to the dynamics associated with Corollary B.9. Then, for learning rate
η = O(T−1/4), the Ψ(i)-regret of every player i is bounded by O(T 1/4), where the O(·) notation suppresses game-specific
parameters polynomial in the size of the game.

Proof. Let us use the notation P := maxi P(i),V := maxi V(i),B := maxi B(i), and G := maxi G(i). For any player i ∈ [n],
Claim B.10 implies that ∥ℓ(i),t − ℓ(i),t−1∥∞ ≤ |Z|(n − 1)ηG, since every player updates her strategy through an ηG-stable
learning algorithm. Thus, by the guarantee of Corollary B.9 we can conclude that for any player i,

R(i),T ≤ P
η
+ η3VT + η3(n− 1)2B|Z|2G2T,

where we used the fact that Dℓ ≤ 1, which follows from the normalization assumption on the utilities. Finally, taking η =
O(T−1/4) yields that R(i),T = O(T 1/4), as desired.

Finally, we conclude with the proof of Theorem 1.1.

Proof of Theorem 1.1. The guarantee of Corollary B.11 along with Theorem 2.6 suffice in order to establish Theorem 1.1.
In particular, for a player i let µ(i),t be any probability distribution on the set Π(i) such that Eπ∼µ(i),t [π] = q(i),t, where
q(i),t is the output of the regret minimizer, on the mixed sequence-form strategy polytope Q(i), realized with the dynamics
of Corollary B.11. Moreover, let µt := µ(1),t ⊗ · · · ⊗ µ(n),t be the joint probability distribution, and µ̄ := 1

T

∑T
t=1 µ

t.
Then, it follows by the linearity of expectation, as well as the linearity of the expression in Definition 2.5 (recall that the set of
transformations Ψ(i) is linear) that µ̄ is an ϵ-EFCE, where ϵ := 1

T maxi R
(i),T , and R(i),T is the cumulative Ψ(i)-regret with

respect to the set Q(i). Finally, the proof follows given that by virtue of Corollary B.11, R(i),T = O(T 1/4) for all i ∈ [n].

We also point out that the complexity of each iteration in the dynamics is analogous to that in (Farina et al. 2021). Finally,
we remark that it is easy to make the overall regret minimizer robust against adversarial losses using an adaptive learning rate.



C Acceleration for Extensive-Form Coarse Correlated Equilibrium
In this section we develop accelerated uncoupled no-regret dynamics for extensive-form coarse correlated equilibria (EFCCE).
In particular, we will provide a slightly improved bound compared to that for EFCE. At the heart of this improvement is a
recent algorithm due to (Farina, Celli, and Sandholm 2021) which circumvents the need of computing the stationary distribution
of a Markov chain; this will allow us to show more favorable stability properties. First, let us introduce some basic concepts,
commencing with that of coarse trigger deviation functions:

Definition C.1 (Coarse Trigger Deviation Functions). Consider some player i ∈ [n], some information set j ∈ J (i), and a
continuation strategy π̂ ∈ Π

(i)
j . A coarse trigger deviation function with respect to the information set j and the continuation

strategy π̂ is any linear function f : R|Σ(i)| → R|Σ(i)| with the following properties:
• f(π) = π for any π ∈ Π(i) such that π[σ(i)(j)] = 0;
• For any σ ∈ Σ(i) and π ∈ Π(i) such that π[σ(i)(j)] = 1,

f(π)[σ] =

{
π[σ] if σ ̸⪰ j;

π̂[σ] if σ ⪰ j.

It will be convenient to instantiate a coarse trigger deviation function in the form of a linear mapping ϕ
(i)
j→π̂ : R|Σ(i)| ∋ x 7→

M
(i)
j→π̂x, where M

(i)
j→π̂ is such that for any σr, σc ∈ Σ(i),

M
(i)
j→π̂[σr, σc] =


1 if σc ̸⪰ j & σr = σc;

π̂[σr] if σc = σ(i)(j) & σr ⪰ j;

0 otherwise.

We will also let Ψ̃(i) := {ϕ(i)
j→π̂ : j ∈ J (i), π̂ ∈ Π

(i)
j } be the set of all possible linear mappings defining coarse trigger

deviations functions for player i.
Similarly to EFCE, we define the notion of extensive-form coarse correlated equilibrium (EFCCE) based on coarse trigger

deviation functions:
Definition C.2 (EFCCE). For ϵ ≥ 0, a probability distribution µ ∈ ∆|Π| is an ϵ-approximate EFCCE if for every player
i ∈ [n] and every coarse trigger deviation function ϕ

(i)
j→π̂ ∈ Ψ̃(i), it holds that

Eπ∼µ

[
u(i)

(
ϕ
(i)
j→π̂(π

(i)),π(−i)
)
− u(i)(π)

]
≤ ϵ,

where π = (π1, . . . ,πn) ∈ Π. A probability distribution µ ∈ ∆|Π| is an EFCCE if it is a 0-EFCCE.
This equilibrium concept requires that the expected utility of any trigger agent (j, π̂) is never larger (by more than an amount

of ϵ) than the expected utility of the player when the mediator’s recommendations are followed.

Theorem C.3 ((Farina, Celli, and Sandholm 2021)). For every player i ∈ [n], let π(i),1, . . . ,π(i),T ∈ Π(i) be a sequence
of deterministic sequence-form strategies whose cumulative Ψ̃(i)-regret is R(i),T with respect to the sequence of linear utility
functions

ℓ(i),t : Π(i) ∋ π(i) 7→ u(i)
(
π(i),π(−i),t

)
. (38)

Then, the correlated distribution of play µ ∈ ∆|Π| is an ϵ-EFCCE, where ϵ := 1
T maxi∈[n] R

(i),T .
In this context, we will employ the general template we presented in Section 3, and in particular Theorem 3.2, in order to

obtain accelerated no-regret dynamics for EFCCE. First, observe that a stable-predictive (external) regret minimizer for the set
Ψ̃(i) can be directly obtained from Theorem 3.4 since Ψ̃(i) ⊆ Ψ(i). Thus, for the rest of the section we will focus on the second
ingredient required in Theorem 3.2: establishing the stability of the associated fixed points.

C.1 Stability of the Fixed Points
Unlike all known methods for computing fixed points related to EFCE, it was recently shown by (Farina, Celli, and Sandholm
2021) (see also (Morrill et al. 2021a)) that one can bypass the computation of a stationary distribution of a Markov chain using
a succinct closed-form solution. This algorithm is presented in Algorithm 5.

Theorem C.4 (Theorem 3, (Farina, Celli, and Sandholm 2021)). Algorithm 5 returns a fixed point of ϕ ∈ co Ψ̃(i), and it runs
in time O(|Σ(i)|D(i)).

Proposition C.5. Under the conditions of Lemma 3.5, Algorithm 5 yields a sequence of (12κD(i))-multiplicatively-stable
strategies, where κ = O(ηDℓ(|Σ(i)|+D

(i)
x (D(i))2)) for a sufficiently small κ = O(1/D(i)).



Algorithm 5: FIXEDPOINT(ϕ) for ϕ ∈ co Ψ̃(i)

Input: ϕ =
∑

j∈J (i) λ[j]ϕj→qj
∈ co Ψ̃(i)

Output: q∗ ∈ Q(i) such that ϕ(q∗) = q∗

1 q∗ ← 0 ∈ R|Σ
(i)|

≥0 , q∗[∅]← 1

2 for σ = (j, a) ∈ Σ
(i)
∗ in top-down (≺) order do

3 dσ ←
∑

j′⪯j λ[j
′]

4 if dσ = 0 then
5 q∗[σ]← q∗[σ(i)(j)]

|A(j)|
6 else
7 q∗[σ]← 1

dσ

∑
j′⪯j λ[j

′]qj′ [σ]q
∗[σ(i)(j′)]

8 return q∗

Proof. By Lemma 3.5 the sequences (λt) and (qt
σ̂) are κ-multiplicatively-stable. Moreover, given that the sequence (λt) is

updated using OMWU, it will always be the case that dσ > 0, for any σ ∈ Σ(i); in other words, Algorithm 5 will never visit
the first “if” branch. Now fix any t ≥ 2. We will show by induction that q∗,t[σ] is such that q∗,t[σ] ≤ (1+2κ)3D[σ]−2q∗,t−1[σ]

and q∗,t[σ] ≥ (1 − κ)3D
(i)[σ]−2q∗,t−1[σ], where D(i)[σ] ≥ 1 is the depth of sequence σ ∈ Σ

(i)
∗ with respect to i’s subtree.

For the base case, let σ = (j, a) such that j ∈ J (i) corresponds to a root information set for player i. Then, it follows that
dσ = λ[j], in turn implying that q∗,t = qt

j [σ]. Thus, q∗,t is indeed κ-multiplicatively stable. Next, consider some sequence
σ = (j, a) at depth D(i)[σ] ≥ 2 such that all ancestor sequences—i.e. all σ(i)(j′) for j′ ⪯ j—satisfy the inductive hypothesis.
Then, it follows that

q∗,t[σ] =

∑
j′⪯j λ

t[j′]qt
j′ [σ]q

∗,t[σ(i)(j′)]∑
j′⪯j λ

t[j′]
(39)

≤ (1 + κ)2

1− κ

∑
j′⪯j λ

t−1[j′]qt−1
j′ [σ]q∗,t[σ(i)(j′)]∑

j′⪯j λ
t−1[j′]

(40)

≤ (1 + 2κ)3(1 + 2κ)3D
(i)[σ]−5q∗,t−1[σ] (41)

≤ (1 + 2κ)3D
(i)[σ]−2q∗,t−1[σ],

where (39) derives from Algorithm 5, (40) uses the κ-multiplicative stability of λt’s and qt
′j’s, and (41) leverages the inductive

hypothesis, as well as the fact that 1/(1− κ)/ ≤ (1 + 2κ) for κ ≤ 1/2. Similar reasoning yields:

q∗,t[σ] =

∑
j′⪯j λ

t[j′]qt
j′ [σ]q

∗,t[σ(i)(j′)]∑
j′⪯j λ

t[j′]

≥ (1− κ)2

1 + κ

∑
j′⪯j λ

t−1[j′]qt−1
j′ [σ]q∗,t[σ(i)(j′)]∑

j′⪯j λ
t−1[j′]

≥ (1− κ)3(1− κ)3D
(i)[σ]−5q∗,t−1[σ]

≥ (1− κ)3D
(i)[σ]−2q∗,t−1[σ].

As a result, if D(i) is the depth of i’s subtree, we conclude that q∗,t[σ] ≤ (1+2κ)3D
(i)−2q∗,t−1[σ] ≤ e6D

(i)κ−4κq∗,t−1[σ] ≤
(1 + 12D(i)κ)q∗,t−1[σ], where we used the inequality ex ≤ 1 + 2x for x ∈ [0, 1/2]. Moreover, we have that q∗,t[σ] ≥
(1− κ)3D

(i)−2q∗,t−1[σ] ≥ (1− 3D(i)κ)q∗,t−1[σ], by Bernoulli’s inequality. This concludes the proof.

Observe that the derived bound on stability is slightly better compared to that for EFCE (Corollary 3.12). Consequently,
having established the stability of the fixed points, we can apply Theorem 3.2 to derive a Ψ̃(i) stable-predictive regret minimizer
for each player i ∈ [n]. Then, using the same steps as in Appendix B.3 we arrive at the following conclusion:

Corollary C.6 (Accelerated Convergence to EFCCE). There exist uncoupled no-regret learning dynamics so that after T iter-
ations the correlated distribution of play converges to an extensive-form coarse correlated equilibrium at a rate of O(T−3/4).



D Description of Game Instances used in the Experiments
In this section we provide a description of the game instances used in our experiments. The parameters associated with each
game are summarized in Table 1.
Kuhn poker. First, we experimented on a three-player variant of the popular benchmark game known as Kuhn poker (Kuhn
1950). In our version, a deck of three cards—a Jack, a Queen, and a King—is employed. Players initially commit a single chip
to the pot, and privately receive a single card. The first player can either check or bet (i.e. place an extra chip). Then, the second
player can in turn check or bet if the first player checked, or folded/called in response to the first player’s bet. If no betting
occurred in the previous rounds, the third player can either check or bet. In the contrary case, the player can either fold or call.
Following a bet of the second player (or respectively the third player), the first player (or respectively the first and the second
players) has to decide whether to fold or to call. At the showdown, the player with the highest card—who has not folded in a
previous round—gets to win all the chips committed in the pot.
Sheriff. Our second benchmark is a bargaining game inspired by the board game Sheriff of Nottingham, introduced by (Farina
et al. 2019b). In particular, we used the baseline version of the game. This game consists of two players: the Smuggler and
the Sheriff. The smuggler must originally come up with a number n ∈ {0, 1, 2, 3} which corresponds to the number of illegal
items to be loaded in the cargo. It is assumed that each illegal item has a fixed value of 1. Subsequently, 2 rounds of bargaining
between the two players follow. At each round, the Smuggler decides on a bribe ranging from 0 to 3, and the Sheriff must
decide whether or not the cargo will be inspected given the bribe amount. The Sheriff’s decision is binding only in the last
round of bargaining. In particular, if during the last round the Sheriff accepts the bribe, the game stops with the Smuggler
obtaining a utility of n minus the bribe amount b that was proposed in the last bargaining round, while the Sheriff receives a
utility equal to b. On the other hand, if the Sheriff does not accept the bribe in last bargaining round and decides to inspect the
cargo, there are two possible alternatives. If the cargo has no illegal items (i.e. n = 0), the Smuggler receives the fixed amount
of 3, while the utility of the Sheriff is set to be −3. In the contrary case, the utility of the smuggler is assumed to be −2n, while
the utility of the Sheriff is 2n.
Liar’s dice. The final benchmark we experimented on is the game of Liar’s dice, introduced by Lisý, Lanctot, and Bowling
(2015). In the three-player variant, the beginning of the game sees each of the three players privately roll an unbiased 3-face die.
Then, the players have to sequentially make claims about their private information. In particular, the first player may announce
any face value up to 3, as well as the minimum number of dice that the player claims are showing that value among the dice of
all players. Then, each player can either make a higher bid, or challenge the previous claim by declaring the previous agent a
“liar”. More precisely, it is assumed that a bid is higher than the previous one if either the face value is higher, or if the claimed
number of dice is greater. If the current claim is challenged, all the dices must be revealed. If the claim was valid, the last
bidder wins and receives a reward of +1, while the challenger suffers a negative payoff of −1. Otherwise, the utilities obtained
are reversed. Any other player will receive 0 utility.

Game Players Decision points Sequences Leaves

Kuhn poker 3 36 75 78
Sheriff 2 73 222 256
Liar’s dice 3 1536 3069 13797

Table 1: The parameters associated with each game.
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