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Abstract

In real-world applications, game-theoretic algo-
rithms often interact with imperfect opponents, and
incorporating opponent models into the algorithms
can significantly improve performance. Opponent
exploitation approaches often use the best response
or robust response to compute counter-strategy to
an opponent model updated during the game-play
or to build a portfolio of exploitative strategies
beforehand. However, in massive games with im-
perfect information, computing exact responses is
intractable. Existing approaches for best response
approximation are either domain-specific or re-
quire an extensive computation for every opponent
model. Furthermore, there is no approach that can
compute robust responses in massive games. We
propose using depth-limited solving with optimal
value function to approximate the best response
and restricted Nash response. Both approaches re-
quire computing the value function beforehand, but
then allow computing the responses quickly even
to previously unseen opponents. Furthermore, we
provide a utility lower bound for both approaches
and a safety guarantee for the robust response. Our
best response approach can also be used for evalu-
ating the quality of strategies computed by novel al-
gorithms through approximating exploitability. We
empirically evaluate the approaches in terms of
gain and exploitability, compare the depth-limited
responses with the poker-specific local best re-
sponse, and show the robust response indeed has
an upper bound on exploitability.

1 Introduction

More and more computer-generated strategies are deployed in
the real world An et al. [2013]; Fang et al. [2017], and with
the deployment to the real world, we can not avoid the in-
teraction of Al systems with humans. This interaction might
be cooperative, but in many cases, for example, in both net-
work security and physical security, it is usually competitive.
Therefore, there has been a significant amount of work to-
wards computing strategies to use against imperfect oppo-
nents such as humans Bard et al. [2013]; Wu et al. [2021];

Southey er al. [2012]; Mealing and Shapiro [2015]; Korb et
al. [2013]; Milec et al. [2021]; Johanson and Bowling [2009].
We will focus on extensive-form games, a powerful model
able to describe recreational games, such as poker, as well
as real-world situations from physical or network security. In
extensive-form games, many exploitative approaches use the
best response or robust response, either to respond to an ex-
plicit model of the opponent or to create a portfolio of ex-
ploitative strategies beforehand Bard ef al. [2013]; Ganzfried
and Sandholm [2011]. Best responses are also used to evalu-
ate the robustness of strategies.

However, real-world games are often massive, and in such
games, computing the best response or robust response is in-
tractable. There are approaches to approximate best response
using frequentist best response with abstraction Johanson et
al. [2008] or by learning the response using deep reinforce-
ment learning Heinrich and Silver [2016]; Mnih et al. [2013].
Nevertheless, none of those approaches have theoretical guar-
antees, and the responses using deep reinforcement learning
can not be quickly recomputed for different opponent models.
We want to guarantee that the response will achieve at least
the value of the game against the strategy we are respond-
ing to. Furthermore, we want the robust response to have a
guaranteed upper bound on the exploitability of the result-
ing strategy. This will ensure that we will always be gaining
against the model, and what we lose when the model is in-
correct will be bounded, unlike in the case of approximate re-
sponses. There is also previous work in the evaluation route,
and here it is a fast poker-specific local best response Lisy and
Bowling [2017] and computationally expensive but general
approximate best response Timbers et al. [2020]. We want to
have a response that can be quickly computed against differ-
ent models, and we only allow precomputed statistics for the
game domain, not for a specific opponent model.

A Breakthrough in solving massive imperfect-information
extensive-form games was the depth-limited solving, which
builds the game until a depth-limit and evaluates the rest
using a value function' Morav&ik et al. [2017]; Brown and
Sandholm [2018]. We use depth-limited solving with a fixed
opponent strategy to compute the responses, which already
changes the computation to iterative instead of one pass in the

'"Value function takes player reaches at the depth limit and re-
turns the evaluation of the information sets for both players.



normal best response. However, when computing response
against a model straightforwardly, we would need a specific
value function learned for that model. This would strongly
reduce the algorithm’s applicability because learning a value
function is expensive, and in many cases, we do not even
know the opponent’s models in advance. Consequently, we
explore the effects of using only one value function across all
models. The value function assumes full rationality of both
players after the depth-limit. We analyze the resulting depth-
limited best response and robust response and show that we
have guarantees for both exploitation of the opponent model
and also, for the robust response, the safety of our strategy.
Conversely, we can also use the response in a scenario where
we need to approximate the exploitability of a strategy. Our
approach can create a diverse portfolio of responses by ex-
changing the value function, and it can be added to the port-
folio with other approaches as local best response Lisy and
Bowling [2017] and approximate best response Timbers et
al. [2020].

Apart from the best response, we focus on the robust re-
stricted Nash response Johanson et al. [2008]. Solving a
game adjusted like this creates the best possible epsilon-safe
responses McCracken and Bowling [2004], where epsilon
varies based on the initial coin probabilities. To guarantee the
robustness of the response, we need an upper bound on ex-
ploitability even in the depth-limited scheme. Resolving gad-
gets Burch et al. [2014]; Moravcik et al. [2016]; Brown and
Sandholm [2017] are tools used to guarantee no increase in
exploitability when we are resolving a subgame. However,
when we have a setup where we need to measure the change
in exploitability in the gadget compared to what we can gain
somewhere else in the game, the existing gadgets can provide
wrong values at the top. We explain and illustrate the problem
and propose a novel gadget modification that solves the issue.

Our contributions are: 1) We analyze the properties of the
best response and restricted Nash response computed using
the continual depth-limited scheme with Nash equilibrium
value function, and we prove the exploitation properties and
the safety guarantees. 2) We formulate the algorithms to find
the responses given opponent strategy and an evaluation func-
tion. 3) We show the problem with gadget values and pro-
pose a new gadget that solves the problem. 4) We investi-
gate the practical performance of the continual depth-limited
responses compared to best responses, restricted Nash re-
sponse, and local best response Lisy and Bowling [2017].

2 Background

A two-player extensive-form game (EFG) consist of a set of
players N = {A, v, c}, where ¢ denotes the chance, A is the
maximizer and v is the minimizer. A is a finite set of all ac-
tions available in the game. H c {ajas--a, | a; € A,n € N}
is the set of histories in the game. We assume that H forms
a non-empty finite prefix tree. We use g c h to denote that h
extends g. The root of H is the empty sequence &. The set
of leaves of H is denoted Z and its elements z are called
terminal histories. The histories not in Z are non-terminal
histories. By A(h) = {a € A | ha € H} we denote the
set of actions available at h. P : H \ Z — N is the player

function which returns who acts in a given history. Denoting
H;={h e H~Z | P(h) = i}, we partition the histories as
H=H,uUH UH.UZ.o.is the chance strategy defined on
H..Foreach h € H.,o.(h) is a probability distribution over
A(h). Utility functions assign each player utility for each leaf
node, u; : Z — R. The game is of imperfect information it
some actions or chance events are not fully observed by all
players. The information structure is described by informa-
tion sets for each player i, which form a partition Z; of H,.
For any information set I; € Z;, any two histories h, h’ € I; are
indistinguishable to player 4. Therefore A(h) = A(h') when-
ever h,h' € I;. For I; € Z; we denote by A(I;) the set A(h)
and by P(I;) the player P(h) for any h € I;.

A strategy o; € X; of player ¢ is a function that assigns
a distribution over A(I;) to each I; € Z;. A strategy profile
o = (oa,0) consists of strategies for both players. 77 (h)
is the probability of reaching  if all players play according
to 0. We can decompose 77 (h) = [l;en 77 (h) into each
player’s contribution. Let w7, be the product of all players’
contributions except that of player ¢ (including chance). For
I; € Z; define 77 (I;) = Yper, 7 (), as the probability of
reaching information set I; given all players play according
to o. w7 (I;) and 7%,(I;) are defined similarly. Finally, let

w7 (h,z) = ::EZ; if h © z, and zero otherwise. 7{ (h, z) and
7%, (h, z) are defined similarly. Using this notation, expected
payoff for player i is u;(0) = ¥,z u;(2)7?(2). BR, NE and
SSE are defined as in NFGs.

Define u; (o, h) as an expected utility given that the history
h is reached and all players play according to o. A counter-
Sactual value v;(o,1) is the expected utility given that the
information set [ is reached and all players play according
to strategy o except player ¢, which plays to reach . For-
mally, vi(0,1) = Yper rez 7 (h)7 (h, 2)ui(2). And simi-
larly counterfactual value for playing action a in information
set 1is v;(0,1,a) = ¥ per zez hacs T3 (ha)T? (ha, 2)u;(2).

Metrics for Evaluating Quality of Strategy

In a two-player zero-sum game, the exploitability of a strategy
is defined as the expected utility a fully rational opponent can
achieve above the value of the game. Formally, exploitabil-
ity £(o;) of strategy o; € X; is E(0;) = u_i(0os,0-5) —
U_i(O'NE), o_; EBR_Z‘(O'Z‘).

We define gain of a strategy against a sub-rational oppo-
nent as an expected utility we receive above the value of the
game. Formally, gain G(o;,0_;) of strategy o; against strat-
egy o_; is defined as G(;,0_;) = ui(0i,0_;) —u;i(aVF).

Depth-limited Solving

We will denote H;(h) the sequence of player i’s information
states and actions on the path to a history h. Two histories
h, h' where player ¢ does not act are in the same augmented
information set I; if H;(h) = H;(h’). We partition the game
histories into public states P.S; c H, which are closed under
the membership within the augmented information sets of all
players. Trunk is a set of histories T' ¢ H, closed under par-
ent nodes and public states. Subgame S c H is a forest of
trees closed under descendant relationship and public states.



Range of a player ¢ is a probability distribution over his in-
formation sets in some public state P.S;, given we reached
the public state PS;. Value function is a function that takes
the public state and both players’ ranges as input and outputs
counterfactual values for each information set in the public
state for both players. In the paper, we assume using an op-
timal value function, which is a value function returning the
same values as we would get using some Nash equilibrium
after the depth-limit. Subgame partitioning ‘P is a partition-
ing that splits the game into trunk and subgames into multi-
ple different levels based on some depth-limit or other factors
(domain knowledge). ui(o)‘T/ is utility for player ¢ if we use
strategy o in trunk 7" and compute values at the dept-limit
using value function V. Subgame partitioning can be created
differently, and factored-observation stochastic games give it
naturally and can be easily converted to EFGs. Therefore, we
use EFGs but assume we can always easily create some sub-
game partitioning Kovarik et al. [2019].

Gadgets

When resolving a subgame we can add a chance node at the
beginning that will aggregate the probabilities of all the play-
ers that the root states are reached. However, there is no guar-
antee on the resulting exploitability of the strategy in the full
game and the exploitability can raise significantly Burch et
al. [2014]. To address the issue gadgets are used to limit the
increase in exploitability.

Resolving Gadget

The resolving gadget Burch et al. [2014] is the gadget that
creates an initial chance node by aggregating only reaches of
chance and the resolving player. The chance node can be nor-
malized, and we would then multiply terminals by the nor-
malization factor, which is equivalent. Instead of the oppo-
nent’s strategy, it adds a node after each initial chance ac-
tion, where the opponent can follow and play the game as it
is normally played or terminate. In that case, it will receive
the counterfactual best response value in that information set,
saved from the previous step.

Max-margin Gadget

The gadget used to improve the resolved strategy is the max-
margin gadget Moravcik et al. [2016]. It starts with a node
for player v, which allows him to choose his beliefs freely.
Then after each action from the initial node, the chance node
follows, which assigns probabilities to nodes in the chosen
information set using the aggregated reaches of both chance
and resolving players.

3 Continual Depth-limited Responses

This section describes the theoretical concepts we are trying
to compute, and we provide formal definitions. For each con-
cept, we also explain a practical algorithm to compute the
strategy defined by the concept. The pseudo-code of the algo-
rithms is in the appendix.

Using Value Function

We want to solve massive games, and the problem with mas-
sive games is that even with the best hardware possible, they

Value function used
at the depth-limit

>

Subgames rooted
in public states

Figure 1: Illustration of the depth-limited solving.

will not fit in the memory. Therefore, recently most promis-
ing option is depth limited solving, which requires a value
function to evaluate public states at the edge of the trunk. To
use depth-limited solving with an opponent model, we need
different value functions for each model to capture the oppo-
nent’s future behavior. This is infeasible for a large number of
opponent models, and we instead explore the effects of using
only the optimal value function.

We start from the top of the game and construct a trunk
with a depth-limit. We solve the trunk, using the value func-
tion to evaluate public states at the depth-limit. Then we move
forward to the next public state reached in the game, and
we construct a subgame starting from the public state with
some depth-limit. Based on the type of response, we solve
the depth-limited subgame, and we continue with the same
steps until we reach the end of the game.

Continual Depth-limited Best Response

Given any extensive-form game G with perfect recall, op-
ponent’s fixed strategy 05 and some subgame partitioning
P we define continual depth-limited best response (CDBR)
recursively from the top, see Figure 1. First we have trunk
T, = T and value function V. CDBR in the trunk 7; for
player A with value function V is defined as o8 (¢©){} =

argmax,, Ua (oa, 05 ‘T,l. In other words we maximize the
utility over the strategy in the trunk where after the depth-
limit we return values from the value function. In each step af-
terwards we create a new subgame S; and create new trunk by
joining the old one with the subgame, creating T; = T;_1 U S;.
We fix the strategy of player A in the 7;_; and maximize over
strategy in the subgame. o' (o )‘T, = argmax_s; ua (0% U
A

az"‘l , ag)‘Tj. We continue like that for each step and we al-
ways create new trunk 7; using the strategy from step 7;_1
until we reach the end of the game. We denote the full CDBR
strategy oa (05)7.

Computing CDBR

We need the definition of the game and a possibility to query
the opponent’s strategy. We have a fixed solving depth, such
that the created subgames can fit in the memory, and it can
be solved in a reasonable time. First, we get the trunk from
the subgame partitioning. We need to compute best response
in the trunk given the value function and since value function
changes when strategy in trunk changes, we can no longer
compute it in one pass as a normal best response. We need
to instead use some version of CFR Tammelin et al. [2015];
Brown and Sandholm [2019]; Farina et al. [2020] and con-



struct the strategy iteratively. Lemma 1 shows that it con-
verges to the best response in the trunk even in current it-
erations.

After we solve the trunk, we move into the subgame, and
we use value resolving without any gadgets because the op-
ponent can not change his strategy in the trunk. It means that
the initial reaches in the subgame are set using both player
strategies and chance. We then solve the resulting subgame
using some CFR with value function. It is necessary to use
CFR instead of just computing the best response since the val-
ues returned by the value function differ based on the chang-
ing strategy in the trunk. Using the best response repeatedly
would likely lead to the strategy never converging.

Continual Depth-limited Restricted Nash Response

Given any extensive-form game G with perfect recall, re-
stricted Nash response can be computed by solving a mod-
ified game: We add initial chance node with two actions that
player A does not observe. We copy the whole game G after
both outcomes of the chance node. In one tree the opponent
plays the fixed strategy and we denote it G¥'. The other tree is
the same as the original game and we mark it G’. We denote
the full modified game G . Parameter p is the initial chance
node probability of picking G¥'. Given opponent’s fixed
strategy 0¥ and some subgame partitioning P of G we
will define continual depth-limited restricted Nash response
(CDRNR) recursively from the top. First we have trunk T
using P and value function V. Note that the number and se-
mantic of infosets at the value function remain unchanged.
CDRNR for player A in the trunk 7™ using value func-

. . Ia ™M ™
tion Vis ok (ol p),} =argmax,, ua(oa, BR(oa))} -
And then in every following step we create the new sub-
game SM and enlarge the trunk to incorporate this sub-

game, creating trunk T = T u SM. Next, we fix player
s T . . .
Qs strategy o, in the previous trunk 7} so it can not

. ’]“7
be changed anymore and the CBRNR is oR (ol p)y =
argmax gm Ua (o, BR(G'A))‘T; where ¢/, is a combina-

N

tion of the strategy we optimize over and the fixed strategy
. sM M
from previous step, formally o/, =o' Uo,!

To summarize, we optimize only over the strategy in the
subgame used in the current step while the strategy in the
previous parts of the game is fixed for player A, and we give
the opponent a chance to best respond in the whole T7. We
denote the full CDRNR strategy o X (o5, p)7.

Computing CDRNR
CDRNR also needs a definition of the game, opponent strat-
egy, value function with the same inputs and outputs as
CDBR, and a modified game. We can create a modified game
GM explicitly, or we can use the original game tree store
everything in it because the trees are identical. The trunk is
solved using some CFR with the value function, where both
players act, but the opponent changes his strategy only in G'.
We play following the strategy in the trunk, and when we need
to play outside of the trunk, we need to create a new subgame.
We are using continual resolving, and robust CDBR needs

a method that limits the exploitability increase. In the defini-
tion, it is done by the opponent being able to best respond in
the whole T" trunk. However, in the practical setting, we start
the resolving at the leaf public state, the trunk is discarded,
and we need to use the resolving gadget, to measure the ex-
ploitability in the subgame correctly as the best response did.
We construct the subgame with the gadget at the start of the
subgame in G’, and the subgame in G* is still constructed
the same way as in CDBR. Since CDRNR dynamically com-
pares possible exploitability by a perfect opponent in G’ with
possible gain against the model in G through the initial
chance node, we need the gadget to return an accurate in-
crease of exploitability. Although commonly used gadgets are
good at resolving the correct strategy, they are unable to accu-
rately measure the increase in exploitability when the strategy
changes. Therefore, we use a new gadget we call a sequential
gadget that returns the values accurately, and we discuss the
gadgets in detail in Section 4.

Then we resolve the subgame using some CFR with the
value function, and we play according to the resolved strategy
while we are in the subgame. When we leave the subgame,
we construct a new subgame, and we continue until the game
ends. In the G we continue as in CDBR, while in G’ we have
replaced BR with a gadget. BR is in the concept to measure
the exploitability of the strategy and, using the new gadget
that can also measure the exploitability, the solution will be
the desired concept.

4 Using Gadgets

We need to use a gadget in our CDRNR to ensure robustness,
since the RNR algorithm implicitly compares the subgame
value of a part with the gadget on G’ and the subgame value
of G¥'. We face a problem that previous applications of the
gadgets did not need correct subgame value, and the gadgets
are constructed to not increase exploitability, but in the pro-
cess, they distort the subgame value. This section shows the
distortion problem with commonly used resolving gadgets,
and we fix the problem using a new sequential gadget.

Restricted Nash Response with Gadget

When using the algorithm to compute the CDRNR described
in Section 3, we are using a gadget to ensure the exploitabil-
ity of the resulting strategy is bounded, and the opponent
does not deviate. However, fully rational player A will likely
change strategy to exploit mistakes in G, In that case, we
need the gadget to also measure the change in subgame value
because CDRNR relies on the implicit comparison of sub-
game values in G’ and G*', which corresponds to a compari-
son of gain and exploitability.

In other words, when we do the trade-off and switch strat-
egy in the gadget for some exploitable strategy to exploit the
opponent model, the expected utility of the gadget for the
opponent will increase. We need this increase to be equal
to the exploitability increase in the original subgame. Next,
we show that commonly used resolving gadgets are either
overestimating or underestimating this value on an example
game in Figure 2. Note that player v can play anything in
those games because they would correspond to G” part of the



Figure 3: Resolving gadget for game in Figure 2.

CDRNR where v can play. In equilibrium, player A plays ac-
tion Y, and player v can play anything. This gives the value
of the game 0, and counterfactual values in all inner nodes
are also 0. If the opponent model in the other part of the tree
makes it worth for player A to play action X, player v will
play (A, C) with utility 3. We will use gadgets to resolve the
game beginning in the player A information set.

Resolving Gadget

Resolving gadget on the game in our example has all utilities
after ferminate actions 0. When we resolve the gadget, the
utility is 0. However, when player A deviates to action X,
player v plays follow action in every node, and his utility will
be 4. Therefore, common resolving gadget may overestimate
the real exploitability of the strategy in the subgame. It might
seem that normalization of the chance node could solve the
problem, but it would only halve the value to 2, which is still
incorrect.

Max-margin Gadget

All the counterfactual best response values are 0 and we do
not need to offset any node in the max-margin gadget. We
simply add the initial decision node and the chance nodes
(since there is only one state in each infoset the nodes have
only one action). When we solve the gadget, player A will
pick action Y, and the gadget value will be 0. However, when
player A deviates to action X, player v now has a choice be-
tween terminal utilities and simply picks action F to receive
the highest one. This will result in utility 2, and we see that
max-margin gadgets can underestimate the real exploitabil-
ity. Similar to the previous gadget, the normalization of the
chance nodes would lead to double the utility, which is still
incorrect.

Sequential Gadget

We analyzed the problem, and the cause is the propagation
through the player v actions to the root. In a normal game,
it is propagated through player v’s strategy, which is con-
strained to follow the sequence form. However, in shown gad-

Figure 4: Max-margin gadget for game in Figure 2

gets, those constraints change, and in resolving gadget player
A can reach all the nodes with probability 1, hence the over-
estimation. In the max-margin gadget, the player v’s strategy
is constrained to sum to one over all the nodes. However, in
the real game, it can sum to 2 because we have two decision
sets, hence the underestimation.

To solve the issue, we will create a gadget that incorpo-
rates the correct constraints in itself. We will use the resolving
gadget as the basis. Instead of using the initial chance node,
we will build a tree above the gadget to encode the sequence
form constraints of the player v to ensure the correct esti-
mate. This construction will enlarge the gadget, but since we
are building a tree above the initial nodes, we will add at most
n — 1 additional nodes, where n is the number of follow/ter-
minate nodes. The gadget correctly measures exploitability in
the subgame because if terminate action is played, we know
exploitability in that part did not increase, and when follow is
played (in the CDRNR case, the follow will be often played
everywhere), the sequence structure when solved is exactly
the best response. It is also possible to use the max-margin
gadget as the basis and apply the sequence form constraints
on 1t.

When we solve the sequential gadget subgame, player &
will pick action Y, and the gadget value will be 0. However,
when player A plays action X, player v will follow every-
where, but because of the sequence form constraints above
the follow/terminate nodes, she will only pick A" and C’,
which results in correct utility 3. We picked this simple game
to showcase the problems of the other gadgets nicely, and un-
fortunately, the sequential gadget actually rebuilds the whole
game. This is caused by the example game having only one
public state, and in real games with multiple public states, this
will not happen.

When using the gadget in full CDRNR, different gadgets
create different strategies for one value of p. We also provide
an example game in the appendix, where player A resolves
the correct RNR strategy using a sequential gadget with a
particular value of p. Still, for other gadgets, there exists no p
such that they would resolve the same strategy.

S Theory

This section provides the theoretical guarantees of perfor-
mance for both CDBR and CDRNR, and provides an exam-
ple why the guarantee can not be even better. Furthermore,
we provide an upper bound on the exploitability of CDRNR,
linking it to the gain by the parameter p. Formal proofs of all
the theorems are in the appendix.



Figure 5: Sequential gadget for game in Figure 2.

Response Performance Against Model

The first two theorems show that CDBR and CDRNR will
achieve at least the value of the game against the model. How-
ever, as we show in an example in appendix, CDBR can per-
form worse than a Nash equilibrium against the fixed oppo-
nent because of the perfect opponent assumption at the depth-
limit.

Lemma 1. Let G be zero-sum imperfect-information
extensive-form game with perfect recall. Let Ug be fixed op-
ponent’s strategy, let T' be some trunk of the game. If we per-
form CFR iterations in the trunk for player A then for the
best iterate

A
F\T A F\T
max ua(on,00)y —ua(Ga,05)y < A\/7|ITR|
O’Z EEA T

where A is variance in leaf utility, A is an upper bound on the
number of actions and |Irg| is number of information sets in
the trunk.

Previous lemma states that the algorithm converges to the
best response in the trunk and not only using average strategy
but also using current strategy.

Theorem 2. Let G be zero-sum extensive-form game with
perfect recall. Let Ug be fixed opponent’s strategy, let P be
any subgame partitioning of the game G and let 05 be a
CDBR given optimal value function V', partitioning P and
opponent strategy ot formally o8 =58 (oE). Let N be
any Nash equilibrium. Then ua (0% ,0L5) > ua(c™F).

Theorem 3. Let G be any zero-sum extensive-form game with
perfect recall and let O'g be any fixed opponent’s strategy in

G. Then we set GM as restricted Nash response modification
of G using og. Let P be any subgame partitioning of the
game G™ and using some p € (0,1), let cX be a CDRNR
given optimal value function V, partitioning P and opponent
strategy of, formally oR = af(ag,p)g. Let oVF be any

Nash equilibrium in G. Then ua (ox,05) > ua (o).

Previous theorems state that our approaches have the first
property that we wanted and when we respond to the model
we will receive at least the value of the game. It is not as
strong as being better than any Nash equilibrium but as we
show in the Observation 6 we do not have that property. It is
caused by the algorithm trying to exploit the opponent in the
current step while thinking the opponent will be rational in
the rest of the game. However, as we show in the experiments
in practice the algorithms work very well.

Exploitability Guarantee of Continual Depth
Limited Restricted Nash Response

Theorem 4. Let G be any zero-sum extensive-form game with
perfect recall and let O'g be any fixed opponent’s strategy in

G. Then we set GM as restricted Nash response modification
of G using Ug. Let P be any subgame partitioning of the
game G™ and using some p € (0,1), let o} be a CDRNR
given optimal value function V, partitioning P and opponent
strategy ag,formally oR = O'E(O'g,p)‘e. Then exploitability
has a bound E(oR) < Q(UE,ag)lpfp, where € and G are

exploitability and gain defined in Section 2.

Last theorem is more complex and it bounds the ex-
ploitability by the gain of the strategy against the model. This
is because of the internal working of RNR which guarantees
to find an epsilon safe best response, but the epsilon is not
known beforehand and it depends both on the parameter p and
on the opponent and that is why we have to reflect both in the
theorem, one explicitly and second hidden in the gain. De-
pendence on opponent can cause problems when in the game
is some extremely bad action with substantially higher payoff
then other actions and the opponent actually plays that action.
Then even with small p the algorithm can be very exploitable.
This is extreme case that will not happen in most games and
we just point to it if anyone would use the algorithm in a game
with very disproportionate utilities.

6 Experiments

We show a comparison between continual depth-limited best
response (CDBR) and local best response (LBR) Lisy and
Bowling [2017]. We also show empirically that the continual
depth-limited restricted Nash response (CDRNR) exploitabil-
ity is bounded, and we explore the tradeoff between ex-
ploitability and gain provided by CDRNR. Hardware setup,
domain description, and algorithm details will be in the ap-
pendix. We use two types of opponent strategies, strategies
generated by a low amount of CFR iterations and random
strategies with different seeds.

Local Best Response vs. CDRNR

We compare LBR and CDBR in Leduc Holde’'m. We only
use the poker domain because even though CDBR is gen-
eral, LBR is poker-specific. We show that with smaller steps
CDBR and LBR are very similar, and as we increase the step
size of CDBR, it starts outperforming LBR. The behavior dif-
fers on every strategy because LBR uses only call as the value
function while CDBR uses the perfectly rational extension.
Furthermore, it is possible to exchange the value function of
CDBR, and both concepts would be almost the same. How-
ever, we would lose the guarantee that CDBR will never per-
form worse than the value of the game.

When we look at the results in Figure 6, we can see that
both concepts are good at approximating the best response,
with CDBR being better against both types of strategies. LBR
looks at one next action, so in terms of comparability, it is
best compared to the CDBR1. Moreover, we can use CDBR
to complement LBR when trying to find exploitability lower
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Figure 6: Gain comparison of best response (BR), local best
response (LBR), and continual depth-limited best response
(CDBR) against strategies from CFR using a small number
of iterations (left) and against random strategies (right). The
a stands for the average of the other values in the plot. The
number after CDBR stands for the amount of action CDBR
was allowed to look in the future, and CDBRNN is one step
CDBR with a neural network as a value function.

bounds of algorithms playing in large games where BR is im-
possible. We can use CDBR with different value functions
to build a portfolio that would make the approximation bet-
ter and possible on any game where continual resolving is
usable. Next, we observe a lack of monotonicity in step in-
crease, which is linked to the counterexample in Section 5,
because when we increase the depth-limit, the algorithm can
exploit some early mistake which causes it to miss a sub-tree
where the opponent makes a much bigger mistake in the fu-
ture. Finally, we can see the difference between the algorithm
with guarantees and LBR without them nicely. Against strat-
egy from 34 CFR iterations, LBR can no longer achieve pos-
itive gain, and it only gets worse with larger iterations, while
CDBR can always achieve at least zero gain (assuming we
have a perfect value function).

Exploitability of Robust Responses

We report both gain and exploitability for CDRNR on the im-
perfect information version of Goofspiel with 5 cards. Re-
sults in Figure 7 show that the proven bound on exploitability
works in practice, and we see that the bound is very loose
in practice. For example, with p = 0.5 the bound on the ex-
ploitability is the gain itself, but the algorithm rarely reaches
even a tenth of the gain in exploitability. This shows that the
CDRNR is similar to the restricted Nash response because,
with a well set p, it can significantly exploit the opponent
without significantly raising its exploitability.

In most cases, both the gain and exploitability of CDRNR
are lower than that of RNR. Gain must be lower because
of the different value function, but the exploitability can be
higher, as seen with p = 0.9 against strategy generated by
5 iterations of CFR. The depth-limited scheme causes that,
and because the algorithm, unlike RNR, has not full infor-
mation when making individual decisions, it can choose dif-
ferent paths to exploit the opponent, raising its exploitability
more than it has to. However, the bound will always hold. We
provide results on different domains and for more values of
parameter p in the appendix.
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Figure 7: Gain and exploitability comparison of BR, RNR
and CDRNR against strategies from CFR using small num-
ber of iterations with different p values. The a stands for the
average of the other values. Number after CDRNR stands for
the depth-limit.

7 Conclusion

Opponent exploitation is an essential topic in computational
game theory. A significant amount of approaches exist to ex-
ploit opponents, but scalability of the approaches to massive
games is a problem. In widely used zero-sum two-player se-
quential imperfect information games, we focus on two pre-
viously unsolved problems in games that can no be fit into
the computer memory. How to approximate the best response
fast with changing opponent model and how to compute ro-
bust response. Our approach is able to do both if we first train
a value function for the game domain we will be working
with, and on top of that, we can use it to approximate the
lower bound on exploitability for other approaches similarly
to approximate the best response. We use depth-limited solv-
ing with optimal value function, analyze the resulting con-
cepts, and prove guarantees on gain and safety guarantee on
exploitability for the CDRNR. We formulate algorithms that
can be practically used to compute the concepts online. Fur-
thermore, we show that common resolving gadgets can not
correctly compute subgame values, and we propose a new
gadget, which solves the issue. Finally, we investigate prac-
tical performance compared to the best response and local
best response, and we show that CDRNR achieves high ex-
ploitation of its opponent with much lower exploitability than
suggested by the theoretical bound.
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A Algorithm Pseudo-code

Algorithm 1 shows the pseudo-code of the depth-limited re-
sponse algorithms.

Algorithm 1: Computing CDBR (CDRNR)

Require: game GG, opponent strategy 05 , value function V'

create (virtually) modified game G (only CDRNR)
create subgame partitioning P from G (G™)
o8 = empty strategy ready to be filled
I = initial information set in which we act
S = current constructed subgame
while / not null do
if I not in S then
S = construct new S from P using previous S
o8 += solution of S using CFR+ with V/
else
pick action A according to ¢ in I
get new I using A (or null if the game ends)
end if
end while

B Counterexample Gadget Game

In this section, we describe the more profound problem with
the gadget. Both resolving and max-margin gadgets might
be unable to find the correct strategy in the RNR depth lim-
ited scenario. We constructed an example game in Figure 8
such that action b is always O for player A and other actions
are dominated by b unless the opponent makes a mistake.
We construct the RNR modified game with the opponent’s
strategy playing purely actions (W, Z, M,0,Q, S) action b
still dominates for p slightly smaller than 0.5. When we have
p = 0.5 the best action is ¢ and when we slightly increase p
action a dominates all the way uptop = 1.

With the gadgets, we take such depth-limit that the game
is first solved without player A playing, and then the next
subgame starts in his information set. The previous game is
solved using the perfect value function, so counterfactual val-
ues everywhere are 0, and the resolving and sequence form
gadget will have O at the terminate actions, and the max-
margin gadget will not offset anything. Then when we solve
the subgame using the sequence form gadget, it is the same
as the original RNR. for p = 0.5 we resolve ¢, and for smaller
p we have b, and for higher p we have a. First, we thought
that even though other gadgets overestimate/underestimate
the values, we can re-scale p and resolve the same strategies.
However, as we show in Figures 10 and 11, there is no p such
that resolving or max-margin gadget resolve the subgame to
create strategy with pure c.

C Experiment Details

Experimental Setup

For all experiments, we use Python 3.8 and C++. We solved
linear programs using gurobi 9.0.3, and experiments were
done on Intel i7 1.8GHz CPU with 8GB RAM. We used
Leduc Holde’m for CDBR experiments with the torch library

Figure 8: Example game where gadgets can not resolve the
strategy in CDRNR. F = 3.500001
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Figure 9: Expected utility of different actions from Figure 8
using sequence form gadget, where = 0.000001 and utility
on the right is times 1077,
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Figure 10: Expected utility of different actions from Figure 8
using max-margin gadget.
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Figure 11: Expected utility of different actions from Figure §
using resolving gadget.



for the neural network experiment. For CDRNR experiments,
we used an imperfect information version of Goofspiel 5. For
most of the experiments, we wanted to solve the concepts per-
fectly with perfect value function, so we used LP and fixed
the parts of the game that needed to be fixed. For the neural
network experiment with CDBR, we used CFR+ to solve the
subgame and the neural network as a value function.

Domain Definition

Leduc Hold’em is a medium-sized poker game. Both players
give one chip at the beginning of the match and receive one
card from a deck with six cards of 2 suits and three ranks.
Then players switch and can call or bet. After a bet, the oppo-
nent can also fold, which finishes the game, and he forfeits all
the staked money. After both players call or after at most two
bets public card is revealed, and another betting round begins.
In the first round, the bet size is two, and in the second, it is 4.
If the game ends without anyone, folding cards are compared,
and the player with pair always wins, and if there is no pair,
the player with the higher card wins. If both have the same
card, the money is split. Goofspiel is a bidding card game
where players are trying to obtain the most points. Cards are
shuffled and set face-down. Each turn, the top point card is re-
vealed, and players simultaneously play a bid card; the point
card is given to the highest bidder or discarded if the bids are
equal. In this implementation, we use a fixed deck with K =
5.

Liar’s Dice is a game where players have some number of
dice and secretly roll. Then first player bids amount of num-
bers rolled and the other player can bid more or disbelieve the
first player. When bidding ends by disbelief action both play-
ers show dice and if the bid is right the caller loses one die and
when the bidder is wrong the bidder loses one die. Then the
game continues but for out computation we use game which
ends by the loss of a die and we use one die with four sides
for each player.

D Proofs

Lemma 2. Let G be zero-sum imperfect-information
extensive-form game with perfect recall. Let JI; be fixed op-
ponent’s strategy, let T' be some trunk of the game. If we per-
form CFR iterations in the trunk for player A then for the

best iterate

A
max ua(oh,00) —ua(6a, V)V<A\/;|ITR|

O’AEEA

where A is variance in leaf utility, A is an upper bound on the
number of actions and |Ig| is number of information sets in
the trunk.

Proof. Using Theorem 2 from Burch er al [2014]
we know that regret for player A is bounded
Rg =7 7 MAX5% €515 Zf 1(ualoy, F)V UA(UAa v))T s
AVAT|Zrg|. Then we
gret to regret using
tion l(oa) = -ua(oa,0b)].
Lemma 2 from Lockhart et al

can directly map the re-
time-independent loss func-
We can then use
[2019] and we get

R . . Ry
I(6a) - mingxes, l(ox) < 7
back we get

Substituting [ and R%

A
max un(oh, o v)V un(Ga, v)V<A\/;|ITR|

EZA

Theorem 3. Let G be zero-sum extensive-form game with
perfect recall. Let ag be fixed opponent’s strategy, let P be

any subgame partitioning of the game G and let 05 be a
CDBR given optimal value functlon V partmomng P and
opponent strategy ot formally o8 =58 (0 ). Let o™ be

any Nash eqmllbrzum. Thenun (0%, 05) > ua(o™VF).

Proof. Using subgame partitioning P, let T} be the trunk
of the game. From the properties of a Nash equilibrium

ua(oNF) < up(oNF 0% )], By definition of CDBR

we can write ua (08,00)7!

us(o8,of ‘T} > up (JgE,og)@. We continue using in-

duction over steps with induction assumption that in step
i, Una (0'!2,01; ‘:Cl > ua (O’NE). We already know it holds
for T7. Now we assume we have trunk 7;_; for which
the induction step holds and trunk 7; which is 7T;_; joined
with new subgame S;. From the definition of CDBR

we know that in each step the strategy is computed as

as max,, ua(oa,05 )7 and

oB(of )V = argmax s, ua (o3 U ok Lok 5 which
AN
B _F\T: NEsi | oBTi1 oF\Ti
means that ua (03,00)y 2 ua(o, " Uo, T oo)y 2

uA(ag,aFv)z;""l last step is because we replace subgame
part of opponent’s strategy by equilibrium and then we
can replace equilibrium in the subgame by V. Therefore,

UA(GE,UI; VS ua (of,ag)g} which concludes the in-
duction step and hence the whole proof. O

Theorem 4. Let G be any zero-sum extensive-form game with
perfect recall and let O'g be any fixed opponent’s strategy in

G. Then we set GM as restricted Nash response modification
of G using O’ . Let P be any subgame partltlomng of the

game GM and using some p € (0,1), let o} be a CDRNR
given Optlmal value functlon V, pamttomng ‘P and opponent
strategy 0 , formally o} = o} (av,p)P Let oNF be any

Nash eqmllbrmm in G. Then upa(oX,05) > up(aVF).

Proof. Let T} be a trunk of a modified game G using parti-
tioning P. We will use u () as utility in G. Utility of player
A for playing Nash equilibrium of the G in trunk 77 will be
higher or the same as game value of G, formally u§ (¢VF) <

GM( NE )T1 We continue using 1nduct10n over steps with

induction assumption that in step 7, u$ (0 ~, B R(af))

u§ (N F). By definition of CDRNR we know it holds for
T,. Now we assume we have trunk 7;_; for which the in-
duction step holds and trunk 7; which is 7;_; joined with
new subgame S;. From the definition of CDRNR we know
that in each step the strategy is computed as o 1 (O'V, p)v =



¢" (o, BR(0",))T:, where o, is a combina-
argmax,s; ug (04, oa))y» where o7, is a co a

tion of the strategy we optimize over and the fixed strategy

from previous step, formally o = oi uo A‘ '. Since we are

maximizing against best response we will find a Nash equilib-
rium of the subgame we are optimizing in, therefore the util-

BR(a ))
induction assumption we have that u¢" (0%, BR(dR))1 >
uG (oVF). Using this with terminal subgames we know that

GM(O'A,BR(U7§)) > u$ (N F). However, we still need
to show it works for u$ (cX,0%). We can do it by replac-
ing strategy of player v in the G’ by Uv which will effec-
tively transform G game back to G' with player v playing
ag. Since we did this transformation by changing the strat-
egy that was a best response the utility can only increase and
ug(af,og) 2u2M(07§,BR(07§)) > uG (o F). O

ity will be higher than u AM CN ! and using the

Theorem 5. Let G be any zero-sum extensive-form game with
perfect recall and let ag be any fixed opponent’s strategy in
G. Then we set GM as restricted Nash response modification
of G using 0 . Let P be any subgame pamttomng of the

game GM and using some p € (0,1), let 6% be a CDRNR
given optlmal value functlon V partitioning P and opponent
strategy O' , formally o® = oR (o v,p)P Then exploitability

has a bound 8(072) G(oR, F)—, where £ and G are

exploitability and gain defined in Sectlon 2.

Proof. We will examine the exploitability increase in
each step. First, we define gain in a single step as
Q(UA,JV)‘T} = uA(aA,av)‘T} —uA(aA,JV)‘T/H fori >0
and G(op,09)1 =ua(oa,09)1° —ua(oc™F). This is con-
sistent with full definition of gain because sum of gains over
all steps will results in ua(oa,04)¢ - uA(aA,av)‘T," +
Up(Tn,09)1" = o = UA(O'A,(TV)€O + un(on,09)10 -
ua(oNE) = un(oa,09)% —una(o™F) = Glon,04). We
define exploitability in a single step similarly as £ (O‘A)%}’
ug(oa, BR(0a))T — ug(oa, BR(0a))y for i > 0
and £(oa)7° = ug(oa, BR(02)){° — ug (o) and it
also sums to full exploitability. By definition of CDRNR
at step i the strategy is computed as af(o’g, p)€ =

¢" (o, BR(0",))™:, where o is a combin
argmax s; Uz (0a, oa))y» where o is a co a-

tion of the strategy we optimize over and the fixed strat-
egy from previous step, formally o\ = ai" U JZH. If we
use Nash equilibrium strategy in the step ¢ exploitability
will be 0 and gain will be non-negative. The full utility of
the step can be written as G(ox,05)1ip - £(oR)1 (1 - p)
and for Nash equilibrium strategy it is bigger than 0. Since
we are maximizing over the strategy it will be at least as

good as Nash strategy ans we can write g(af,ag )gp -
E(oR )V (1 - p) > 0 reorganizing the equation gives us
G(oR, F)V = > E(oR)1:. Summing over all the steps
g1vesus5(aA)<g(Cf§7 7o) -t -

Figure 12: Example of game where step best response is
worse than NE against fixed strategy o(h) = %, o(x)=1.

E CDBR Against Nash Strategy

Observation 6. An example in Figure 12 shows that CDBR
can perform worse than a Nash equilibrium against the fixed
opponent because of the perfect opponent assumption after
the depth-limit. An example is a game of matching pennies
with a twist. Player v can choose in the case of the tails
whether he wants to give the opponent 10 instead of only 1.
A rational player will never do it, and the equilibrium is a
uniform strategy as in normal matching pennies.

Now we have an opponent model that plays h with proba-
bility % and always plays x. The best response to the model
will always play T and get payoff 13—0. Nash equilibrium strat-
egy will get payoff 2, and CDBR with depth-limit 2 will cut
the game before the x|y choice. Assuming the opponent plays
perfectly after the depth-limit and chooses y, A will always
play H. Playing H will result in receiving payoff % which
is higher than the value of the game ( % ) but lower than what
Nash equilibrium can get against the model.

F Aditional CDBR Results

We show CDBR results on more domains that we were not
able to fit in the main paper. Interestingly on small liar’s dice
the CDBR is almost perfect even with only depth one. On
Goofspiel the result resembles more the Leduc poker result.
We use random strategies and strategies generated by CFR.
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Figure 13: More CDBR results on Liar’s dice (top) and
imperfect-information Goofspiel (bottom).



G Aditional CDRNR Results

We show more results for Goofspiel with different values of
p and also Leduc Hold’em and Liar’s dice.
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Figure 14: Aditional results for CDRNR with different values
of p. Generated on Leduc Hold’em.
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Figure 15: Aditional result generated on Liar’s dice. For every
p it exactly mimics the RNR so we only show one value.
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Figure 16: Aditional results for CDRNR with different values
of p. Generated on Goofspiel.



