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Abstract

There has been tremendous recent progress on equilibrium-
finding algorithms for zero-sum imperfect-information
extensive-form games, but there has been a puzzling gap
between theory and practice. First-order methods have
significantly better theoretical convergence rates than any
counterfactual-regret minimization (CFR) variant. Despite
this, CFR variants have been favored in practice. Experi-
ments with first-order methods have only been conducted on
small- and medium-sized games because those methods are
complicated to implement in this setting, and because CFR
variants have been enhanced extensively for over a decade
they perform well in practice. In this paper we show that a
particular first-order method, a state-of-the-art variant of the
excessive gap technique—instantiated with the dilated entropy
distance function—can efficiently solve large real-world prob-
lems competitively with CFR and its variants. We show this on
large endgames encountered by the Libratus poker AI, which
recently beat top human poker specialist professionals at no-
limit Texas hold’em. We show experimental results on our
variant of the excessive gap technique as well as a prior ver-
sion. We introduce a numerically friendly implementation of
the smoothed best response computation associated with first-
order methods for extensive-form game solving. We present,
to our knowledge, the first GPU implementation of a first-order
method for extensive-form games. We present comparisons of
several excessive gap technique and CFR variants.

Introduction
Two-player zero-sum extensive-form games (EFGs) are a
general representation that enables one to model a myriad
of settings ranging from security to business to military to
recreational. The Nash equilibrium solution concept (Nash
1950) prescribes a sound notion of rational play for this set-
ting. It is also robust in this class of game: if the opponent
plays some other strategy than an equilibrium strategy, that
can only help us.

There has been tremendous recent progress on equilibrium-
finding algorithms for extensive-form zero-sum games. How-
ever, there has been a vexing gap between the theory and
practice of equilibrium-finding algorithms. In this paper we
will help close that gap.
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It is well-known that the strategy spaces of an extensive-
form game can be transformed into convex polytopes that
allow a bilinear saddle-point formulation (BSPP) of the Nash
equilibrium problem as follows (Romanovskii 1962; von
Stengel 1996; Koller, Megiddo, and von Stengel 1996).

min
x∈X

max
y∈Y
〈x,Ay〉 = max

y∈Y
min
x∈X
〈x,Ay〉 (1)

Problem (1) can be solved in a number of ways. Early
on, von Stengel (1996) showed that it can be solved with a
linear program (LP)—by taking the dual of the optimization
problem faced by one player (say the y player) when holding
the strategy of the x player fixed, and injecting the primal
x-player constraints into the dual LP. This approach was
used in early work on extensive-form game solving, up to
games of size 105 (Koller and Pfeffer 1997). Gilpin and
Sandholm (2007) coupled it with lossless abstraction in order
to solve Rhode Island hold’em which has 109 nodes in the
game tree. Since then, LP approaches have fallen out of
favor. The LP is often too large to fit in memory, and even
when it does fit the iterations of the simplex or interior-point
methods used to solve the LP take too long—even if only
modest accuracy is required.

Instead, modern work on solving this game class in the
large focuses on iterative methods that converge to a Nash
equilibrium in the limit. Two types of algorithms have been
popular in particular: regret-minimization algorithms based
on counterfactual regret minimization (CFR) (Zinkevich et
al. 2007; Lanctot et al. 2009; Bowling et al. 2015; Brown,
Ganzfried, and Sandholm 2015; Moravčík et al. 2017; Brown
and Sandholm 2017c), and first-order methods (FOMs) based
on combining a fast bilinear saddle-point problem (BSPP)
solver such as the excessive gap technique (EGT) (Nesterov
2005a) with an appropriate distance-generating function
(DGF) for EFG strategies (Hoda et al. 2010; Kroer et al. 2015;
Kroer et al. 2017; Kroer, Farina, and Sandholm 2017).

The CFR family has been most popular in practice so far.
The CFR+ variant (Tammelin et al. 2015) was used to near-
optimally solve heads-up limit Texas hold’em (Bowling et
al. 2015), a game that has 1013 decision points after lossless
abstraction. CFR+ was also used for subgame solving in
two recent man-machine competitions where AIs beat human
poker pros at no-limit Texas hold’em (Moravčík et al. 2017;
Brown and Sandholm 2017c)—a game that has 10161 deci-
sion points (before abstraction) (Johanson 2013). A variant



of CFR was also used to compute the whole-game strategy
(aka. “blueprint” strategy) for Libratus, an AI that beat top
specialist pros at that game (Brown and Sandholm 2017c).

CFR-based algorithms converge at a rate of 1√
T

, whereas
some algorithms based on FOMs converge at a rate of 1

T .
Despite this theoretically superior convergence rate, FOMs
have had relatively little adoption in practice. Comparisons of
CFR-based algorithms and FOMs were conducted by Kroer
et al. (2015) and Kroer et al. (2017), where they found that a
heuristic variant of EGT instantiated with an appropriate dis-
tance measure is superior to CFR regret matching (RM) and
CFR with regret-matching+ (RM+) for small-to-medium-
sized games.

In this paper, we present the first experiments on a large
game—a real game played by humans—showing that an ag-
gressive variant of EGT instantiated with the DGF of Kroer et
al. (2017) is competitive with the CFR family in practice. It
outperforms CFR with RM+, although CFR+ is still slightly
faster. This is the first time that a FOM has been shown
superior to any CFR variant on a real-world problem. We
show this on subgames encountered by Libratus. The Libra-
tus agent solved an abstraction of the full game of no-limit
Texas hold’em ahead of time in order to obtain a “blueprint”
strategy. During play, Libratus then refined this blueprint
strategy by solving subgames with significantly more de-
tailed abstractions in real time (Brown and Sandholm 2017c;
Brown and Sandholm 2017b). Our experiments are on solv-
ing endgames encountered by Libratus in the beginning of
the fourth (“river” in poker lingo) betting round, with the
full fine-grained abstraction actually used by Libratus. This
abstraction has no abstraction of cards, that is, the model cap-
tures all aspects of the cards. There is abstraction of bet sizes
to keep the branching factor reasonable; in our experiments
we use the exact full fine-grained betting abstraction that was
used by Libratus. Thus we show that it is possible to get the
theoretically superior guarantee of FOMs while also getting
strong practical performance.

In order to make our approach practical, we introduce a
number of practical techniques for running FOMs on EFGs.
In particular, we derive efficient and numerically friendly
expressions for the smoothed-best response (SBR) and prox
mapping, two optimization subproblems that EGT solves
at every iteration. Furthermore, we introduce a GPU-based
variant of these operations which allows us to parallelize
EGT iterations.

We show experiments for several variants of both EGT
and CFR. For EGT, we consider two practical variants, one
that has the initial smoothing parameter set optimistically,
and one that additionally performs aggressive stepsizing. For
CFR, we show experimental results for CFR with RM, RM+,
and CFR+ (i.e., CFR with linear averaging and RM+). We
will describe these variants in detail in the body of the paper.
We conducted all the experiments on parallelized GPU code.

Bilinear Saddle-Point Problems
The computation of a Nash equilibrium in a zero-sum
imperfect-information EFG can be formulated as the fol-

lowing bilinear saddle-point problem:
min
x∈X

max
y∈Y
〈x,Ay〉 = max

y∈Y
min
x∈X
〈x,Ay〉, (2)

where X ,Y are convex, compact sets in Euclidean spaces
Ex, Ey. A is the sequence-form payoff matrix and X ,Y
are the sequence-form strategy spaces of Player 1 and 2,
respectively.

Several FOMs with attractive convergence properties have
been introduced for BSPPs (Nesterov 2005b; Nesterov 2005a;
Nemirovski 2004; Chambolle and Pock 2011). These meth-
ods rely on having some appropriate distance measure over
X and Y , called a distance-generating function (DGF). Gen-
erally, FOMs use the DGF to choose steps: given a gradient
and a scalar stepsize, a FOM moves in the negative gradi-
ent direction by finding the point that minimizes the sum of
the gradient and of the DGF evaluated at the new point. In
other words, the next step can be found by solving a reg-
ularized optimization problem, where long gradient steps
are discouraged by the DGF. For EGT on EFGs, the DGF
can be interpreted as a smoothing function applied to the
best-response problems faced by the players.
Definition 1. A distance-generating function for X is a func-
tion d(x) : X → R which is convex and continuous on
X , admits continuous selection of subgradients on the set
X ◦ = {x ∈ X : ∂d(x) 6= ∅}, and has strong convexity mod-
ulus ϕ w.r.t. ‖ · ‖. Distance-generating functions for Y are
defined analogously.

Given DGFs dX , dY for X ,Y with strong convexity mod-
uli ϕX and ϕY respectively, we now describe EGT (Nesterov
2005a) applied to (1). EGT forms two smoothed functions
using the DGFs

fµy (x) = max
y∈Y
〈x,Ay〉 − µydY , (3)

φµx(y) = min
x∈X
〈x,Ay〉+ µxdX . (4)

These functions are smoothed approximations to the opti-
mization problem faced by the x and y player, respectively.
The scalars µx, µy > 0 are smoothness parameters denoting
the amount of smoothing applied. Let yµy (x) and xµx(y)
refer to the y and x values attaining the optima in (3) and (4).
These can be thought of as smoothed best responses. Nes-
terov (2005b) shows that the gradients of the functions fµy (x)
and φµx(y) exist and are Lipschitz continuous. The gradient
operators and Lipschitz constants are

∇fµy (x) = a1 +Ayµy (x), ∇φµx(y) = a2 +A>xµx(y),

L1

(
fµy
)

=
‖A‖2
ϕYµy

, L2 (φµx) =
‖A‖2
ϕXµx

,

where ‖A‖ is the `1-norm operator norm.
Let the convex conjugate of dX : X → R be denoted

by d∗X (g) = maxx∈X g
Tx− d(x). The gradient ∇d∗(g) of

the conjugate then gives the solution to the smoothed-best-
response problem.

Based on this setup, EGT minimizes the following saddle-
point residual, which is equal to the sum of regrets for the
players.

εsad(xt, yt) = max
y∈Y

(xt)TAy −min
x∈X

xTAyt



Algorithm 1 EGT(DGF-center xω , DGF weights µx, µy , and ε >
0)

1: x0 = ∇d∗X
(
µ−1
x ∇fµy (xω)

)
2: y0 = yµy (xω)
3: t = 0
4: while εsad(x

t, yt) > ε do
5: τt =

2
t+3

6: if t is even then
7: (µt+1

x , xt+1, yt+1) = STEP(µtx, µ
t
y, x

t, yt, τ)
8: else
9: (µt+1

y , yt+1, xt+1) = STEP(µty, µ
t
x, y

t, xt, τ)
10: t = t+ 1
11: return xt, yt

Algorithm 2 STEP(µx, µy, x, y, τ )

1: x̂ = (1− τ)x+ τxµx(y)
2: y+ = (1− τ) y + τyµy (x̂)

3: x̃ = ∇d∗X
(
∇dX (xµx(y))− τ

(1−τ)µx∇fµy (x̂)
)

4: x+ = (1− τ)x+ τ x̃
5: µ+

x = (1− τ)µx
6: return µ+

x , x+, y+

The idea behind EGT is to maintain the excessive gap condi-
tion (EGC), EGV(x, y) := φµx(y)− fµy (x) > 0. The EGC
implies a bound on the saddle-point residual: εsad(xt, yt) ≤
µxΩX +µyΩY , where ΩX = maxx,x′ dX (x)− dX (x′), and
ΩY defined analogously.

We formally state EGT (Nesterov 2005a) as Algorithm 1.
The EGT algorithm alternates between taking steps focused
on X and Y . Algorithm 2 shows a single step focused on X .
Steps focused on y are analogous. Algorithm 1 shows how
the alternating steps and stepsizes are computed, as well as
how initial points are selected.
Suppose the initial values µx, µy satisfy µx = ϕX

L1(fµy ) . Then,
at every iteration t ≥ 1 of EGT, the corresponding solution
zt = [xt; yt] satisfies xt ∈ X , yt ∈ Y , the excessive gap
condition is maintained, and

εsad(xT , yT ) ≤ 4‖A‖
T + 1

√
ΩXΩY
ϕXϕY

.

Consequently, EGT has a convergence rate of O( 1
T ) (Nes-

terov 2005a).

Treeplexes
Hoda et al. (2010) introduced the treeplex, a class of convex
polytopes that captures the sequence-form of the strategy
spaces in perfect-recall EFGs.
Definition 2. Treeplexes are defined recursively:

1. Basic sets: The standard simplex ∆m is a treeplex.
2. Cartesian product: IfQ1, . . . , Qk are treeplexes, thenQ1×
· · · ×Qk is a treeplex.

3. Branching: Given a treeplex P ⊆ [0, 1]
p, a collection of

treeplexes Q = {Q1, . . . , Qk} where Qj ⊆ [0, 1]
nj , and

l = {l1, . . . , lk} ⊆ {1, . . . , p}, the set defined by

P l Q :=
{

(x, y1, . . . , yk) ∈ Rp+
∑
j nj :

x ∈ P, y1 ∈ xl1 ·Q1, . . . , yk ∈ xlk ·Qk
}

is a treeplex. We say xlj is the branching variable for the
treeplex Qj .
One interpretation of the treeplex is as a set of simplexes,

where each simplex is weighted by the value of the variable

above it in the parent branching operation (or 1 if there is
no branching operation preceding the simplex). Thus the
simplexes generally sum to the value of the parent rather than
1.

For a treeplex Q, we denote by SQ the index set of the
set of simplexes contained in Q (in an EFG SQ is the set of
information sets belonging to the player). For each j ∈ SQ,
the treeplex rooted at the j-th simplex ∆j is referred to as
Qj . Given vector q ∈ Q and simplex ∆j , we let Ij denote
the set of indices of q that correspond to the variables in
∆j and define qj to be the subvector of q corresponding to
the variables in Ij . For each simplex ∆j and branch i ∈ Ij ,
the set Dij represents the set of indices of simplexes reached
immediately after ∆j by taking branch i (in an EFG, Dij is
the set of potential next-step information sets for the player).
Given a vector q ∈ Q, simplex ∆j , and index i ∈ Ij , each
child simplex ∆k for every k ∈ Dij is scaled by qi. For a
given simplex ∆j , we let pj denote the index in q of the
parent branching variable qpj scaling ∆j . We use the con-
vention that qpj = 1 if Q is such that no branching operation
precedes ∆j . For each j ∈ SQ, dj is the maximum depth of
the treeplex rooted at ∆j , that is, the maximum number of
simplexes reachable through a series of branching operations
at ∆j . Then dQ gives the depth of Q. We use bjQ to identify
the number of branching operations preceding the j-th sim-
plex in Q. We say that a simplex j such that bjQ = 0 is a root
simplex.

Figure 1 illustrates an example treeplexQ. This treeplexQ
is constructed from nine two-to-three-dimensional simplexes
∆1, . . . ,∆9. At level 1, we have two root simplexes, ∆1,∆2,
obtained by a Cartesian product operation (denoted by ×).
We have maximum depths d1 = 2, d2 = 1 beneath them.
Since there are no preceding branching operations, the parent
variables for these simplexes ∆1 and ∆2 are qp1 = qp2 = 1.
For ∆1, the corresponding set of indices in the vector q is
I1 = {1, 2}, while for ∆2 we have I2 = {3, 4, 5}. At level 2,
we have the simplexes ∆3, . . . ,∆7. The parent variable of
∆3 is qp3 = q1; therefore, ∆3 is scaled by the parent variable
qp3 . Similarly, each of the simplexes ∆3, . . . ,∆7 is scaled
by their parent variables qpj that the branching operation was
performed on. So on for ∆8 and ∆9 as well. The number



∆1

q2 ·∆4

q7 q8

q1 ·∆3

q6 ·∆8

q16 q17

q6 ·∆7

q13
q14

q15

q5 q6

q1 q2
∆2

q4 ·∆6

q11 q12

q3 ·∆5

q9 q10

q3 q4

×

×

Figure 1: An example treeplex constructed from 9 simplexes. Cartesian product operation is denoted by ×.

of branching operations required to reach simplexes ∆1,∆3

and ∆8 is b1Q = 0, b3Q = 1 and b8Q = 2, respectively.

Smoothed Best Responses
Let dj(x) =

∑
i∈Ij xi log xi + log n be the entropy DGF for

the n-dimensional simplex ∆n, where n is the dimension
of the j’th simplex in Q. Kroer et al. (2017) introduced the
following DGF for Q by dilating ds for each simplex in SQ
and take their sum: d(q) =

∑
j∈SQ βjqpjdj

(
qj

qpj

)
, where

βj = 2 +
∑
k∈Dj 2βk. Other dilated DGFs for treeplexes

were introduced by Hoda et al. (2010) and were also studied
by Kroer et al. (2015). Kroer et al. (2017) proved that this
DGF is strongly convex modulus 1

M where M is the max-
imum value of the `1 norm over Q. EGT instantiated with
this DGF converges at a rate of LM22d logn

T where L is the
maximum entry in the payoff matrix, d is the depth of the
treeplex, and n is the maximum dimension of any individual
simplex.

We now show how to solve (4) for this particular DGF.
While it is known that this DGF has a closed-form solution,
this is the first time the approach has been shown in a pa-
per. Furthermore, we believe that our particular solution is
novel, and leads to better control over numerical issues. The
problem we wish to solve is the following.

argmin
∑
j∈SQ

〈qj , gj〉+ βjqpjdj(q
j/qpj )

= argmin
∑
j∈SQ

qpj (〈q̄j , gj〉+ βjdj(q̄
j)) (5)

where the equality follows by the fact that qi = qpj q̄i. For
a leaf simplex j, its corresponding term in the summation
has no dependence on any other part of the game tree except
for the multiplication by xpj (because none of its variables
are parent to any other simplex). Because of this lack of
dependence, the expression

〈q̄j/qpj , gj〉+ βjdj(q
j/qpj )

can be minimized independently as if it were an optimization
problem over a simplex with variables q̄j = xj/qpj (this was

also pointed out in Proposition 3.4 in Hoda et al. (2010)).
We show how to solve the optimization problem at a leaf:
minq̄j∈∆j

〈q̄j , gj〉+ βjdj(q̄
j). Writing the Lagrangian with

respect to the simplex constraint and taking the derivative
wrt. q̄i gives

min
q̄j
〈q̄j , gj〉+ βjdj(q̄

j) + λ(1−
∑
i∈Ij

q̄i)

=⇒ gi + βj(1 + log q̄i) = λ

=⇒ q̄i ∝ e−gi/βj

This shows how to solve the smoothed-best-response problem
at a leaf. For an internal simplex j, Proposition 3.4 of Hoda
et al. (2010) says that we can simply compute the value at
all simplexes below j, add the value to gj (this is easily seen
from (5); each qi acts as a scalar on the value of all simplexes
after i), and proceed by induction. Letting |Ij | = n, we now
simplify the objective function:

〈q̄j , gj〉+ βj(
∑
i∈Ij

(q̄i log q̄i) + log n)

=
∑
i

(q̄i(gi + βj log q̄i)) + βj log n

=
∑
i

(q̄i(λ− βj)) + βj log n

= λ− βj + βj log n,

where the last two equalities follow first by applying our
derivation for λ and then the fact that q̄j sums to one. This
shows that we can choose an arbitrary index i ∈ Ij and
propagate the value gi + βj log q̄i + βj log n. In particular,
for numerical reasons we choose the one that maximizes q̄i.

In addition to smoothed best responses, fast FOMs usually
also require computation of proximal mappings, which are
solutions to argminq∈Q 〈q, g〉+D(q‖q′), where D(q‖q′) =
d(q)− d(q′)− 〈∇d(q′), q − q′〉 is the Bregman divergence
associated with the chosen DGF d. Unlike the smoothed best
response, we are usually only interested in the minimizing
solution and not the associated value. Therefore we can
drop terms that do not depend on q and the problem reduces
to argminq∈Q 〈q, g〉 + d(q) − 〈∇d(q′), q〉, which can be



solved with our smoothed best response approach by using
the shifted gradient g̃ = g −∇d(q′). This has one potential
numerical pitfall: the DGF-gradient ∇d(q′) may be unstable
near the boundary of Q, for example because the entropy
DGF-gradient requires taking logarithms. It is possible to
derive a separate expression for the proximal mapping that is
similar to what we did for the smoothed best response; this
expression can help avoid this issue. However, because we
only care about getting the optimal solution, not the value
associated with it, this is not necessary. The large gradients
near the boundary only affect the solution by setting bad
actions too close to zero, which does not seem to affect
performance.

Practical EGT
Rather than the overly conservative stepsize and µ parameters
suggested in the theory for EGT we use more practical vari-
ants combining practical techniques from Kroer et al. (2017)
and Hoda et al. (2010). The pseudocode is shown in Algo-
rithm 3. As in Kroer et al. (2017) we use a practically-tuned
initial choice for the initial smoothing parameters µ. Further-
more, rather than alternating the steps on players 1 and 2, we
always call STEP on the player with a higher µ value (this
choice is somewhat reminiscent of the µ-balancing heuris-
tic employed by Hoda et al. (2010) although our approach
avoids an additional fitting step). The EGT algorithm with
a practically-tuned µ and this µ balancing heuristic will be
denoted EGT in our experiments. In addition, we use an EGT
variant that employs the aggressive µ reduction technique in-
troduced by Hoda et al. (2010). Aggressive µ reduction uses
the observation that the original EGT stepsize choices, which
are τ = 2

3+t , are chosen to guarantee the excessive gap con-
dition, but may be overly conservative. Instead, aggressive
µ reduction simply maintains some current τ , initially set to
0.5, and tries to apply the same stepsize τ repeatedly. After
every step, we check that the excessive gap condition still
holds; if it does not hold then we backtrack, τ is decreased,
and we repeat the process. A τ that maintains the condition is
always guaranteed to exist by Theorem 2 of Nesterov (2005a).
The pseudocode for this is given in Algorithm 4. EGT with
aggressive µ reduction, a practically tuned initial µ, and µ
balancing, will be denoted EGT/AS in our experiments.

Algorithm Implementation
To compute smoothed best responses, we use a parallelization
scheme. We parallelize across the initial Cartesian product
of treeplexes at the root. As long as this Cartesian product
is wide enough, the smoothed best response computation
will take full advantage of parallelization. This is a common
structure in real-world problems, for example representing
the starting hand in poker, or some stochastic private state
of each player in other applications. This parallelization
scheme also works for gradient computation based on tree
traversal. However, in this paper we do gradient computation
by writing down a sparse payoff matrix using CUDA’s sparse
library and let CUDA parallelize the gradient computation.

For poker-specific applications (and certain other games
where utilities decompose nicely based on private informa-

tion) it is possible to speed up the gradient computation
substantially by employing the accelerated tree traversal of
Johanson et al. (2011). We did not use this technique. In
our experiments, the majority of time is spent in gradient
computation, so this acceleration is likely to affect all the
tested algorithms equally. Furthermore, since the technique
is specific to games with certain structures, our experiments
give a better estimate of general EFG-solving performance.

Experiments
We now present experimental results on running all the pre-
viously described algorithms on a GPU. All experiments
were run on a Google Cloud instance with an NVIDIA Tesla
K80 GPU with 12GB available. All code was implemented
in C++ using CUDA for GPU operations, and cuSPARSE
for the sparse payoff matrix. We compare against several
CFR variants.1 We run CFR with RM (CFR(RM)), RM+

(CFR(RM+)), and CFR+ which is CFR with RM+ and a
linear averaging scheme. We now describe these variants. De-
tailed descriptions can also be found in Zinkevich et al. (2007)
and Tammelin et al. (2015).

Our experiments are conducted on real large-scale “river”
endgames faced by the Libratus AI (Brown and Sandholm
2017c). Libratus was created for the game of heads-up no-
limit Texas hold’em. Libratus was constructed by first com-
puting a “blueprint” strategy for the whole game (based on ab-
straction and Monte-Carlo CFR (Lanctot et al. 2009)). Then,
during play, Libratus would solve endgames that are reached
using a significantly finer-grained abstraction. In particular,
those endgames have no card abstraction, and they have a
fine-grained betting abstraction. For the beginning of the
subgame, the blueprint strategy gives a conditional distribu-
tion over hands for each player. The subgame is constructed
by having a Chance node deal out hands according to this
conditional distribution.2

A subgame is structured and parameterized as follows.
The game is parameterized by the conditional distribution
over hands for each player, current pot size, board state (5
cards dealt to the board), and a betting abstraction. First,
Chance deals out hands to the two players according to the
conditional hand distribution. Then, Libratus has the choice
of folding, checking, or betting by a number of multipliers
of the pot size: 0.25x, 0.5x, 1x, 2x, 4x, 8x, and all-in. If
Libratus checks and the other player bets then Libratus has
the choice of folding, calling (i.e. matching the bet and ending
the betting), or raising by pot multipliers 0.4x, 0.7x, 1.1x,
2x, and all-in. If Libratus bets and the other player raises
Libratus can fold, call, or raise by 0.4x, 0.7x, 2x, and all-in.
Finally when facing subsequent raises Libratus can fold, call,
or raise by 0.7x and all-in. When faced with an initial check,
the opponent can fold, check, or raise by 0.5x, 0.75x, 1x,
and all-in. When faced with an initial bet the opponent can

1All variants use the alternating updates scheme.
2Libratus used two different subgame-solving techniques, one

“unsafe” and one “safe” (Brown and Sandholm 2017b). The compu-
tational problem in the two is essentially identical. We experiment
with the “unsafe” version, which uses the prior distributions de-
scribed here.



Algorithm 3 EGT/AS(DGF-center xω , DGF weights µx, µy , and ε > 0)

1: x0 = ∇d∗X
(
µ−1
x ∇fµy (xω)

)
2: y0 = yµy (xω)
3: t = 0
4: τ = 1

2

5: while εsad(x
t, yt) > ε do

6: if µx > µy then
7: (µt+1

x , xt+1, yt+1, τ) = DECR(µtx, µ
t
y, x

t, yt, τ)
8: else
9: (µt+1

y , yt+1, xt+1, τ) = DECR(µty, µ
t
x, y

t, xt, τ)
10: t = t+ 1
11: return xt, yt

Algorithm 4 DECR(µx, µy, x, y, τ )

1: (µ+
x , x

+, y+) = STEP(µx, µy, x, y, τ)
2: while EGV(x, y) < 0 do
3: τ = 1

2
τ

4: (µ+
x , x

+, y+) = STEP(µx, µy, x, y, τ)
5: return µ+

x x
t, yt, τ

fold, call, or raise by 0.7x, 1.1x, and all-in. When faced with
subsequent raises the opponent can fold, call, or raise by 0.7x
and all-in. The game ends whenever a player folds (the other
player wins all money in the pot), calls (a showdown occurs),
or both players check as their first action of the game (a
showdown occurs). In a showdown the player with the better
hands wins the pot. The pot is split in case of a tie. (For our
experiments we used endgames where it is Libratus’s turn to
move first.)

We conducted experiments on two river endgames ex-
tracted from Libratus play: Endgame 2 and Endgame 7.
Endgame 2 has a pot of size 2100 at the beginning of the river
endgame. It has dimension 140k and 144k for Libratus and
the opponent, respectively, and 176M leaves in the games
tree. Endgame 7 has a pot of size $3750 at the beginning
of the river subgame. It has dimension 43k and 86k for the
players, and 54M leaves.

In the first set of experiments we look at the per-iteration
performance of each algorithm. The results are shown in
Figure 2. The y-axis shows the sum of the regrets for each
player, that is, how much utility they can gain by playing
a best response rather than their current strategy. The unit
is milli-big-blinds (mbb); at the beginning of the original
poker game, Libratus, as the “big blind”, put in $100 and
the opponent put in $50, in order to induce betting. Mbb is
a thousandth of the big blind value, that is, 10 cents. This
is a standard unit used in research that uses poker games for
evaluation. One mbb is often considered the convergence
goal. CFR+ and EGT/AS perform the best; both reach the
goal of 1mbb after about 400 iterations in both Endgame 2
and 7. EGT, CFR(RM), and CFR(RM+) all take about 3000
iterations to reach 1mbb in Endgame 7. In Endgame 2, EGT
is slowest, although the slope is steeper than for CFR(RM)
and CFR(RM+). We suspect that better initialization of EGT
could lead to it beating both algorithms. Note also that EGT
was shown better than CFR(RM) and CFR(RM+) by Kroer
et al. (2017) in the smaller game of Leduc hold’em with an
automated µ-tuning approach. Their results further suggest
that better initialization may help enhance converge speed
significantly.

One issue with per-iteration convergence rates is that the
algorithms do not perform the same amount of work per
iteration. All CFR variants in our experiments compute 2 gra-
dients per iteration, whereas EGT computes 3, and EGT/AS
computes 4 (the additional gradient computation is needed in
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Figure 2: Solution quality as a function of the number of
iterations for all algorithms on two river subgames. The
solution quality is given as the sum of regrets for the players
in milli-big-blinds.

order to evaluate the excessive gap). Furthermore, EGT/AS
may use additional gradient computations if the excessive
gap check fails and a smaller τ is tried (in our experiments
about 15 adjustments were needed). In our second set of
plots, we show the convergence rate as a function of the total
number of gradient computations performed by the algorithm.
This is shown in Figure 3. By this measure, EGT/AS and
EGT perform slightly worse relative to their performance as
measured by iteration count. In particular, CFR+ takes about
800 gradient computations in order to reach 1mbb in either
game, whereas EGT/AS takes about 1800.

In our experiments CFR+ vastly outperforms its theoreti-
cal convergence rate (in fact, every CFR variant does signifi-
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Figure 3: Solution quality as a function of the number of gra-
dient computations for all algorithms on two river subgames.
The solution quality is given as the sum of regrets for the
players in milli-big-blinds.

cantly better than the theory predicts, but CFR+ especially
so). However, CFR+ is known to eventually reach a point
where it slows down and performs worse than 1

T . In our
experiments we start to see CFR+ slowing down towards
the end of Endgame 7. EGT, in contrast, is guaranteed to
maintain a rate of 1

T , and so may be preferable if a guarantee
against slowdown is desired or high precision is needed.

Conclusions and Future Research
We introduced a practical variant of the EGT algorithm that
employs aggressive stepsizes, µ balancing, a numerically-
friendly smoothed-best-response algorithm, parallelization
via Cartesian product operations at the root of the strategy
treeplex, and a GPU implementation. We showed for the first
time, via experiments on real large-scale Libratus endgames,
that FOMs (with the dilated entropy DGF) are competitive
with the CFR family of algorithms. Specifically, they out-
perform the other CFR variants and are close in efficiency to
CFR+. Our best variant of EGT can solve subgames to the
desired accuracy at a speed that is within a factor of two of
CFR+.

Our results suggest that it may be possible to make FOMs
faster than CFR+. For example, we did not spend much
effort tuning the parameters of EGT, and tuning them would
make the algorithm even more efficient. Second, we only
investigated EGT, which has been most popular FOM in EFG
solving. However, it is possible that other FOMs such as

mirror prox (Nemirovski 2004) or the primal-dual algorithm
by Chambolle and Pock (2011) could be made even faster.

Furthermore, stochastic FOMs (i.e., ones where the gradi-
ent is approximated by sampling to make the gradient com-
putation dramatically faster) could be investigated as well.
Kroer et al. (2015) tried this using stochastic mirror prox (Ju-
ditsky, Nemirovski, and Tauvel 2011) without practical suc-
cess, but it is likely that this approach could be made better
with more engineering.

It would also be interesting to compare our EGT ap-
proach to CFR algorithms for computing equilibrium refine-
ments, for example in the approximate extensive-form perfect
equilibrium model investigated by Kroer, Farina, and Sand-
holm (2017) and Farina, Kroer, and Sandholm (2017).

Pruning techniques (for temporarily skipping parts of the
game tree on some iterations) have been shown effective for
both CFR and EGT-like algorithms, and could potentially be
incorporated as well (Lanctot et al. 2009; Brown, Kroer, and
Sandholm 2017; Brown and Sandholm 2017a).

Finally, while EGT, as well as other FOM-based ap-
proaches to computing zero-sum Nash equilibria, are not
applicable to the computation of general-sum Nash equilibria
in theory they could still be applied to the computation of
strategies in practice (gradients can still be computed, and so
the smoothed best responses and corresponding strategy up-
dates are still well-defined). For CFR the analogous approach
seems to perform reasonably well (Čermák, Bošanskỳ, and
Gatti 2015), and you might expect the same from FOMs such
as EGT.
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