
Composability of Regret Minimizers

Gabriele Farina and Christian Kroer and Tuomas Sandholm
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

{gfarina,ckroer,sandholm}@cs.cmu.edu

Abstract

Regret minimization is a powerful tool for solving large-
scale problems; it was recently used in breakthrough re-
sults for large-scale extensive-form-game solving. This was
achieved by composing simplex regret minimizers into an
overall regret-minimization framework for extensive-form-
game strategy spaces. In this paper we study the general com-
posability of regret minimizers. We derive a calculus for con-
structing regret minimizers for complex convex sets that are
constructed from convexity-preserving operations on simpler
convex sets. In particular, we show that local regret minimiz-
ers for the simpler sets can be composed with additional re-
gret minimizers into an aggregate regret minimizer for the
complex set. As an application of our framework we show
that the CFR framework can be constructed easily from our
framework. We also show how to construct a CFR variant
for extensive-form games with strategy constraints. Unlike a
recently proposed variant of CFR for strategy constraints by
Davis, Waugh, and Bowling (2018), the algorithm resulting
from our calculus does not depend on any unknown constants
and thus avoids binary search.

Introduction
Counterfactual regret minimization (CFR) (Zinkevich et
al. 2007), and the newest variant CFR+ (Tammelin et al.
2015), have been a central component in several recent
milestones in solving imperfect-information extensive-form
games (EFGs). Bowling et al. (2015) used CFR+ to near-
optimally solve heads-up limit Texas hold’em. Brown and
Sandholm (2017) and Moravčı́k et al. (2017) used CFR vari-
ants, along with other scalability techniques, to create AIs
that beat professional poker players at the larger game of
heads-up no-limit Texas hold’em.

CFR is usually presented as an algorithm for comput-
ing a Nash equilibrium in zero-sum EFGs. However, an
alternative view is that it is a framework for construct-
ing regret minimizers for the types of action spaces en-
countered in EFGs, as well as single-agent sequential de-
cision making problems with similarly-structured actions
spaces. Viewed from a convex optimization perspective,
the class of convex sets CFR applies to are sometimes re-
ferred to as treeplexes (Hoda et al. 2010; Kroer et al. 2015;

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2018). In this view, CFR specifies how a set of regret mini-
mization algorithms for simplexes and linear loss functions
can be composed to form a regret minimizer for a treeplex.
Farina, Kroer, and Sandholm (2019) take this view fur-
ther, describing how regret-minimization algorithms can be
composed to form regret minimizers for a generalization of
treeplexes that allows convex sets and convex losses.

In this paper take a general view on the composability of
regret minimizers. We derive a set of rules for how regret
minimizers can be constructed for fairly general convex sets
via a calculus of regret minimization: given regret minimiz-
ers for convex sets X ,Y we show how to compose these re-
gret minimizers for various convexity-preserving operations
performed on the sets (e.g. intersection, convex hull, Carte-
sian product), in order to arrive at a regret minimizer for the
resulting convex set. This approach draws inspiration from
the calculus of convex sets and functions found in books
such as Boyd and Vandenberghe (2004). It likewise has
parallels to disciplined convex programming (Grant, Boyd,
and Ye 2006), which emphasizes the solving of convex pro-
grams via composition of simple convex functions and sets.
This approach has been highly successful in the CVX soft-
ware package for convex programming (Grant, Boyd, and
Ye 2008).

Our approach treats the regret minimizers for individual
convex sets as black boxes, and builds a regret minimizer
for the resulting convex set by constructing overall solu-
tions from the output of each individual regret minimizer.
This is important because it allows freedom in choosing the
best regret minimizer for each individual set (from either a
practical or theoretical perspective). For example, in practice
the regret matching (Hart and Mas-Colell 2000) and regret
matching+ (RM+) (Tammelin et al. 2015) regret minimiz-
ers are known to perform better than theoretically-superior
regret minimizers such as Hedge (Brown, Kroer, and Sand-
holm 2017), while Hedge may give better theoretical results
when trying to prove the convergence rate of a construction
through our calculus.

One way to conceptually view our construction is as re-
gret circuits: in order to construct a regret minimizer for
some convex set X that consists of convexity-preserving op-
erations on (say) two sets X1,X2 we construct a regret cir-
cuit consisting of regret minimizers for X1 and X2, along
with a sequence of operations that aggregate the results of

those circuits in order to form an overall circuit for X . We
use this view extensively in the paper, as we show the regret-
circuit representation of every operation that we develop.

As an application, we show that the correctness of the
CFR algorithm can be showed easily through our calculus,
and likewise show that the recent Constrained CFR algo-
rithm (Davis, Waugh, and Bowling 2018) can be constructed
via our framework.

Regret Minimization

We work inside of the online learning framework called on-
line convex optimization (Zinkevich 2003). In this setting, a
decision maker repeatedly plays against an unknown envi-
ronment by making a sequence of decisions x1, x2, As
customary, we assume that the set X ⊆ Rn of all possible
decisions for the decision maker is convex and compact. The
outcome of each decision xt is evaluated as `t(xt), where `t
is a convex function unknown to the decision maker until
after the decision is made. Hence, abstractly, a regret mini-
mizer is a device that supports two operations:
• it gives a recommendation for the next decision xt+1∈X ;
• it receives/observes the convex loss function `t used to

“evaluate” decision xt.
The learning is online in the sense that the decision
maker/regret minimizer’s next decision, xt+1, is based only
on the previous decisions x1, . . . , xt and corresponding loss
observations `1, . . . , `t.

The quality of the regret minimizer is measured by its cu-
mulative regret. Formally, the cumulative regret at time T is
defined as

RT(X ,F) :=

T∑
t=1

`t(xt)−min
x̂∈X

{
T∑
t=1

`t(x̂)

}
,

It measures the difference between the loss cumulated by the
sequence of decisions x1, . . . , xT and the loss that would
have been cumulated by playing the best time-independent
decision x̂ in hindsight. A desirable property of a regret min-
imizer is Hannan consistency: the average regret approaches
zero, that is, RT(X ,F) grows at a sublinear rate in T .

The above discussion can be formalized as follows.

Definition 1 (Regret minimizer). Let X be a closed con-
vex set, and let F be a convex cone in the space of bounded
convex functions on X , and such that F contains the space
L of linear functions. A (X ,F)-regret minimizer is a func-
tion that selects the next action xt+1 ∈ X given the his-
tory of actions x1, . . . , xt and observed corresponding loss
functions `1, . . . , `t ∈ F , so that the cumulative regret
RT(X ,F) ∈ o(T).

Universality of linear losses

It is known that that a regret minimizer that is pow-
erful enough to handle any (bounded) linear loss is
also able to handle any convex function with bounded
(sub)gradients (McMahan 2011). In this sense, regret min-
imizers for linear losses are universal.

The crucial insight is in the following observation:

RT(X ,F) =

T∑
t=1

`t(xt)−min
x̂∈X

{
T∑
t=1

`t(x̂)

}

≤
T∑
t=1

`t(xt)−min
x̂∈X

{
T∑
t=1

`t(xt) + 〈∂`t(xt), x̂− xt〉
}

=

T∑
t=1

〈∂`t(xt), xt〉 −min
x̂∈X

{
T∑
t=1

〈∂`t(xt), x̂〉
}
. (1)

In other words, the regret of a (X ,F)-regret minimizer is
always bounded by the regret of a (X ,L)-regret minimizer
that at each iteration t sees 〈∂`t(xt), · 〉 as its (linear) loss
function.

The regret circuit corresponding to the above construction
is shown in Figure 1. We call diagrams like the one in Fig-
ure 1 a regret circuit. Throughout this paper, we will use the
following conventions when drawing regret circuits:
• the symbol is used to denote an operation that con-

structs or manipulates one or more loss functions;
• the symbol is used to denote an operation that combines

or manipulates one or more recommendations;
• dashed arrows denote recommendations that originate

from the previous iteration.

(X ,F)

(X ,L) xt`t−1 〈∂`t−1(xt−1), · 〉

xt−1

Figure 1: Regret circuit representing the construction of a
(X ,F)-regret minimizer using a (X ,L)-regret minimizer.
Dashed arrows represent recommendations that originate
from the previous iteration.

Set shifting
If we have a (X ,L)-regret minimizer h, but would like to
minimize regret over (Y,L) where Y = X + b for some
vector b, then we can use h directly: since losses are linear
subtracting a constant vector from each point has no effect
on regret, and so we simply shift Y to X via the mapping
x = y − b.

Due to the above we can always assume without loss of
generality that 0 ∈ X ; if it is not then we can simply subtract
any x ∈ X from X in order to make it so.

Connection to Game Theory and
Convex-Concave Saddle Point Problems

Regret minimization is tightly connected to the problem of
computing a Nash equilibrium in a zero-sum game. A well-
known folk theorem states that the average of a sequence
of regret minimizing strategies converges to a Nash equi-
librium in a zero-sum game. In this section we explain the
relationship to a particular class of games: EFGs. We will
later show that our framework allows construction of regret
minimizers for EFG strategy spaces, as well as for the more

general class of convex-concave saddle-point problems pre-
sented below.

In two-player zero-sum extensive-form games with per-
fect recall, a Nash equilibrium is a solution to the bilinear
saddle point problem

min
x∈X

max
y∈Y

x>Ay,

where X and Y are convex polytopes whose description
is provided by the sequence-form constraints, and A is
a real payoff matrix (von Stengel 1996). Here, we focus
on a slightly more general utility structure than is usually
considered, and allow an additional regularization term for
each player. In particular, we assume that we are solving a
convex-concave saddle-point problem of the form

min
x∈X

max
y∈Y

{
x>Ay + d1(x)− d2(y)

}
, (2)

where X ,Y are allowed to be more general convex sets,
and d1, d2 are convex functions. This more general formu-
lation allows us to capture applications such as computing a
normal-form quantal-response equilibrium (Ling, Fang, and
Kolter 2018; Farina, Kroer, and Sandholm 2019), and sev-
eral types of opponent exploitation. Farina, Kroer, and Sand-
holm (2019) study opponent exploitation where the goal is
to compute a best response, subject to a penalty for mov-
ing away from the Nash equilibrium strategy, this is cap-
tured in the above by having d1 or d2 include a penalty term
which penalizes distance to an NE strategy. Farina, Kroer,
and Sandholm (2017) study constraints on individual deci-
sion points, and Davis, Waugh, and Bowling (2018) study
additional constraints on the overall EFG polytopes X ,Y;
both these approaches can be captured in our setting by al-
lowing more general X ,Y .

Convex-concave saddle point problems of the form (2)
can be solved using online convex optimization. The key
idea is to consider the loss functions `tX : X → R and
`tY : Y → R, for player 1 and 2 respectively, defined as

`tX : x 7→ (−Ayt)x+ d1(x),

`tY : y 7→ (A>xt)y + d2(y).

With this choice of loss function, the induced regret-
minimizing dynamics for the two players lead to a convex-
concave saddle-point problem. Specifically, assume the two
players play the game T times, accumulating regret after
each iteration as in Figure 2. A folk theorem explains the

(X ,L)

(Y,L)

`t−1X

`t−1Y

xt

yt `tY

`tX
(X ,L)

(Y,L)

xt+1

yt+1 · · ·· · ·

Figure 2: The flow of strategies and losses in regret mini-
mization for games.

tight connection between low-regret strategies and approxi-
mate Nash equilibria. We will need a more general variant
of that theorem generalized to (2). The convergence criterion
we are interested in is the saddle-point residual (or gap) ξ of
(x̄, ȳ), defined as
ξ = max

ŷ∈Y
{d1(x̄)− d2(ŷ) + 〈x̄, Aŷ〉}

−min
x̂∈X
{d1(x̂)− d2(ȳ) + 〈x̂, Aȳ〉}.

The following folk theorem shows that the average
of a sequence of regret-minimizing strategies leads to a
bounded saddle-point residual (see Farina, Kroer, and Sand-
holm (2019) for a proof):
Theorem 1. If the average regret accumulated on X and
Y by the two sets of strategies {xt}Tt=1 and {yt}Tt=1 is ε1
and ε2, respectively, then any strategy profile (x̄, ȳ) such
that x̄ = 1

T

∑T
t=1 x

t, ȳ = 1
T

∑T
t=1 y

t has a saddle-point
residual bounded by ε1 + ε2.

When d1 ≡ d2 ≡ 0 and X ,Y are the players’ stragegy
spaces, Theorem 1 asserts that the average strategy profile is
an (ε1 + ε2)-Nash equilibrium.

Simple Operations
As we already observed in the subsection “Universality of
linear losses”, we can extend any (X ,L)-regret minimizer
to handle more expressive loss functionals. In fact, once a
(X ,L)-regret minimizer is known, extending it to a (X ,F)-
regret minimizer is mostly a mechanical task. For this rea-
son, in the rest of the paper we focus on (X ,L)-regret min-
imizers, and show how these can be constructed by compo-
sition of simpler primitives.

Cartesian product
In this section, we show how to combine a (X ,L)- and a
(Y,L)-regret minimizer to form a (X × Y,L)-regret mini-
mizer. As we have already observed, we can assume without
loss of generality that (0, 0) ∈ (X ,Y). Hence, any linear
function ` : X × Y → R can be written as

`(x, y) = `X (x) + `Y(y)
where the linear functions `X : X → R and `Y : Y → R
are defined as `X : x 7→ `(x, 0) and `Y : y 7→ `(0, y). It is
immediate to verify that indeed

RT(X×Y,L) =

(
T∑
t=1

`tX (xt)−min
x̂∈X

{
T∑
t=1

`tX (x̂)

})

+

(
T∑
t=1

`tY(yt)−min
ŷ∈Y

{
T∑
t=1

`tY(ŷ)

})
= RT(X ,L) +RT(Y,L).

In other words, it is possible to minimize regret on X × Y
by simply minimizing it on X and Y independently and then
combining the recommendations, as in Figure 3.

Affine transformation and Minkowski sum
Let T : E → F be an affine map between two Euclidean
spaces E and F , and let X ⊆ E be a convex and compact
set. We now show how a (X ,L)-regret minimizer can be
employed to construct a (T (X),L)-regret minimizer.

(X × Y,L)

(X ,L)

(Y,L)

xt

yt

× (xt, yt)`t−1

`t−1(·, 0)

`t−1(0, ·)

Figure 3: Regret circuit for the Cartesian product X × Y .

Since every y ∈ T (X) can be written as y = T (x) for
some x ∈ X , the cumulative regret for a (T (X),L)-regret
minimizer can be expressed as

RT(T (X),L) =

T∑
t=1

(`t ◦ T)(xt)−min
x̂∈X

T∑
t=1

(`t ◦ T)(x̂).

Since `t and T are affine, their composition `tT := `t ◦ T is
also affine. Hence, RT(T (X),L) is the same regret as a (X ,L)-
regret minimizer that observes the linear function `tT (·) −
`tT (0) instead of `t. The construction is summarized by the
circuit of Figure 4, where we ignored the constant shifting
term `tT (0). It holds that ‖`tT ‖ ≤ ‖`t‖ · ‖T‖.

(T (X),L)

(X ,L) xt T (xt)`t−1 `t−1 ◦ T

Figure 4: Regret circuit for the image T (X) of X under the
affine transformation T .

As an application, we use the above construction to form a
regret minimizer for the Minkowski sum X +Y := {x+ y :
x ∈ X , y ∈ Y} of two sets. Indeed, note that X + Y =
σ(X × Y), where σ : X × Y 3 (x, y) 7→ x + y is a linear
transformation. Hence, we can combine the construction in
this section together with the construction of the Cartesian
product (Figure 3). This results in the circuit of Figure 5.

(X + Y,L)

(X ,L)

(Y,L)

xt

yt

+
xt + yt`t−1

Figure 5: Regret circuit for the Minkowski sum X + Y .

Convex hull
In this section, we show how to combine a (X ,L)- and
a (Y,L)-regret minimizer to form a (co{X ,Y},L)-regret
minimizer, where co denotes the convex hull operation,

co{X ,Y} = {λ1x+ λ2y : x ∈ X , y ∈ Y, (λ1, λ2) ∈ ∆2},
and ∆2 is the two-dimensional simplex

∆2 := {(λ1, λ2) ∈ R+ : λ1 + λ2 = 1}.
Hence, we can think of a (co{X ,Y},L)-regret minimizer as
recommending a triple (λt, xt, yt) ∈ ∆2 × X × Y at each
time point t. Using the linearity of the loss functions,

RT(co{X ,Y},L) =

(
T∑
t=1

λt1`
t(xt) + λt2`

t(yt)

)
− min

λ̂∈∆2

x̂∈X ,ŷ∈Y

{
λ̂1

T∑
t=1

`t(x̂) + λ̂2

T∑
t=1

`t(ŷ)

}
.

Now, we make two crucial observations. First, it holds that

min
λ̂∈∆2

x̂∈X ,ŷ∈Y

{
λ̂1

T∑
t=1

`t(x̂) + λ̂2

T∑
t=1

`t(ŷ)

}

= min
λ̂∈∆2

{
λ̂1 min

x̂∈X

{
T∑
t=1

`t(x̂)

}
+ λ̂2 min

y∈Y

{
T∑
t=1

`t(ŷ)

}}
,

since all components of λ̂ are non-negative. Second, the in-
ner minimization problem over X is related to the cumu-
lative regret RTX ,L) of the (X ,L)-regret minimizer that ob-
serves the loss functions `t as follows:

min
x̂∈X

{
T∑
t=1

`t(x̂)

}
= −RT(X ,L) +

T∑
t=1

`t(xt).

(An analogous relationship holds for Y .) Combining the two
observations, we can write

RT(co{X ,Y},L) =

(
T∑
t=1

λt1`
t(xt) + λt2`

t(yt)

)
−min
λ̂∈∆2

{(
T∑
t=1

λ̂1`
t(xt)+λ̂2`

t(yt)

)
−
(̂
λ1R

T
(X ,L)+λ̂2R

T
(Y,L)

)}
.

Using the fact that min(f + g) ≥ min f + min g,and intro-
ducting the quantity

RT(∆2,L) :=

(
T∑
t=1

λt1`
t(xt) + λt2`

t(yt)

)
−min
λ̂∈∆2

{(
T∑
t=1

λ̂1`
t(xt) + λ̂2`

t(yt)

)}
,

we conclude that
RT(co{X ,Y},L) ≤ RT(∆2,L) + max{RT(X ,L), R

T
(Y,L)}. (3)

The introduced quantity,RT(∆2,L), is the cumulative regret
of a (∆2,L)-regret minimizer that, at each time instant t,
observes the (linear) loss function

`tλ : ∆2 3 (λ1, λ2) 7→ λ1`
t(xt) + λ2`

t(yt). (4)
Intuitively, this means that in order to pick “good points”
in the convex hull co{X ,Y}, we can let two independent
(X ,L)- and (Y,L)-regret minimizers pick good recommen-
dations in X and Y respectively, and then use a third re-
gret minimizer that decides how to “mix” the recommenda-
tions. This way, we break the task of picking the next recom-
mended triple (λt, xt, yt) into three different subproblems,
two of which can be run independently. Equation (3) guaran-
tees that if all three regrets {RT(∆2,L), R

T
(X ,L), R

T
(Y,L)} grow

sublinearly, then so does RT(co{X ,Y},L). Figure 6 shows the
regret circuit that corresponds to our construction above.

(co{X ,Y},L)

(X ,L)

(Y,L)

(∆2,L)

xt

xt−1

yt

yt−1

λt1x
t + λt2y

t`t−1 `t−1
λ λt

Figure 6: Regret circuit for the convex hull co{X ,Y}. The
loss function `tλ is defined in Equation (4).

Extending to multiple set Since the convex hull op-
eration is associative, we can handle the convex hull
co{X1, . . . ,Xn} of a finite number of sets by iteratively
adding one set at a time. Equivalently, one can extend the
construction shown in Figure 6 to n sets as follows. First, the
input loss function `t−1 is broadcast to all the (Xi,L)-regret
minimizers (i = 1, . . . , n). The loss function `tλ is input into

a (∆n,L)-regret minimizer, where ∆n is the n-dimensional
simplex, and is defined for all time instants t as

`tλ : ∆n 3 (λ1, . . . , λn) 7→ λ1x
t
1 + · · ·+ λnx

t
n.

Finally, at each time step t, the n recommendations
xt1, . . . , x

t
n output by the (Xi,L)-regret minimizers are com-

bined with the recommendation λt output by the (∆n,L)-
regret minimizer to form λt1x

t
1 + · · ·+ λtnx

t
n.

V -polytopes Our construction can be directly applied to
construct a (X ,L)-regret minimizer for a V -polytope X =
co{v1, . . . , vn}where v1, . . . , vn are n points in a Euclidean
space E. Of course, any ({vi},L)-regret minimizer outputs
the constant recommendation vi. Hence, our construction
(Figure 6) reduces to a single (∆n,L)-regret minimizer that
observes the (linear) loss function
`tλ : ∆n 3 (λ1, . . . , λn) 7→ λ1`

t(v1) + · · ·+ λn`
t(vn).

This observation already appears in Theorem 3 in the work
by Farina, Kroer, and Sandholm (2017).

Application: Construction of CFR
We now show that these operations can be used to construct
the CFR framework. The first thing to note is that the strat-
egy space of a single player in an EFG is a treeplex, which
can be viewed recursively as a series of convex hull and
Cartesian product operations1. In particular, an information
set is viewed as an n-dimensional convex hull (since the sum
of probabilities over actions is 1), where each action a at the
information set corresponds to a treeplex Xa representing
the set of possible information sets coming after a (in order
to perform the convex hull we have to create a new larger
representation of Xa so that the dimension is the same for all
a, described in detail below). The Cartesian product opera-
tion is used to represent multiple potential information sets
being arrived at (for example different hands dealt in a poker
game). An example is shown in Figure 7: each information
set Xi (except X0) corresponds to a 2-dimensional convex
hull over two treeplexes, one of which is always empty (i.e.
a leaf node); each is a Cartesian product, the top-most

represents the three possible hands that the player may
have when making their first decision, the second layer of
Cartesian products represent different actions taken by the
opponent.

The information-set construction is as follows: let I be the
information set under construction, andAI the set of actions.
Each action a ∈ AI has some, potentially empty, treeplex
Xa beneath it, let na be the dimension of that treeplex. We
cannot form a convex hull over {Xa}a∈AI

directly, since the
sets are not of the same dimension, and we do not wish to
average across different strategy spaces. Instead, we create
a new convex set X ′a ∈ R|AI |+

∑
a∈AI

na for each a; the first
|AI | indices correspond to the actions in AI , and each Xa
gets its own subset of indices. For each x ∈ Xa there is a
corresponding x′ ∈ X ′a; x′ has a 1 at the index of a, x at
the indices corresponding to Xa, and 0 everywhere else. The
convex hull is constructed over the set {X ′a}a, which gives

1This perspective is also used when constructing distance func-
tions for first-order methods for EFGs (Hoda et al. 2010; Kroer et
al. 2015; 2018)

X0

X3

X6

X2

X5

X1

X4

start

fold call fold call fold call

check raise check raise check raise

jack queen king

check raise check raise check raise

Figure 7: Treeplex for the first player in the game of Kuhn
poker. Each Xi represents a convex hull over the treeplexes
below, while denotes the Cartesian product operation.

a1 an

XnX1

· · · co








e1

X1

{0}
...
{0}



,




e2

{0}
X2

...
{0}



, . . . ,




en

{0}
{0}

...
Xn








o1 on

XnX1

· · ·
X1 ×X2 × · · · × Xn

Figure 8: Inductive treeplex construction rule. ei ∈ Rn con-
tains a 1 at index i, and 0 everywhere else.

exactly the treeplex rooted at I . The Cartesian product is
easy and can be done over a given set of treeplexes rooted at
information sets I1, . . . , In. The inductive construction rule
for the treeplex are given in Figure 8.

If we use as our loss function the gradient Ayt where yt
is the opponent strategy at iteration t, and then apply our ex-
pressions for the Cartesian-product and convex-hull regrets
inductively then it follows from (4) that the loss associated
with each action is exactly the negative counterfactual value.
Finally, uniform sampling from the set of treeplex strategies
as per Theorem 1 implies the per-information-set averaging
used in standard CFR presentations (Zinkevich et al. 2007).

More Complex Operations
Conceptually, all the operations we have studied in the pre-
vious sections (that is, convex hulls, Cartesian products,
Minkowski sums, ...) take one or more sets and produce a
regret minimizer for a larger set. Instead, in this section we
deal with operations that curtail the set of recommendations
that can be output by our regret minimizer.

Constraint enforcement via Lagrangian relaxation
Suppose that we want to construct a (X∩{x : g(x)≤0},L)-
regret minimizer, where g is a convex function, but we only
dispose of a (X ,L)-regret minimizer. One natural idea is to
use the latter to approximate the former, by penalizing any
choice of x ∈ X such that g(x) > 0. In particular, it seems
natural to introduce the penalized loss function

˜̀t : X 3 x 7→ `t(x) + βt max{0, g(x)},

where βt is a (large) positive constant that can change over
time. This approach is reminiscent of Lagrangian relaxation.

Of course, the loss function ˜̀t is not linear, and as such
it cannot be handled as is by our (X ,L)-regret minimizer.
However, as we have observed in the section “Universal-
ity of linear losses”, the regret induced by ˜̀t can be mini-
mized by our (X ,L)-regret minimizer if that observes the
“linearized” loss function

˜̀t� : X 3 x 7→ `t(x) + βt�〈∂g(xt), x〉,
where

βt� :=

{
βt if g(xt) > 0

0 otherwise.

(This definition of βt� is a direct consequence of Danskin’s
theorem.) It is interesting to see what a small cumulative
regret guarantees in terms of satisfaction of the constraint
g(x) ≤ 0. In particular, let RT(X ,L) be the cumulative regret
of our (X ,L)-regret minimizer. Then, introducing Xg :=
X ∩{x : g(x) ≤ 0} and τg := {t ∈ {1, . . . , T} : g(xt)>0},

RT(X ,L) ≥
T∑
t=1

`t(xt) +
∑
t∈τg

βtg(xt)

−min
x̂∈X

{
T∑
t=1

`t(x̂) +

(
T∑
t=1

βi

)
max{0, g(x̂)}

}

≥
(

T∑
t=1

`t(xt)− min
x̂∈Xg

T∑
t=1

`t(x̂)

)
+
∑
t∈τg

βtg(xt). (5)

where the first inequality is by (1) and the second inequal-
ity comes from restricting the domain of the minimization.2
Thus, if the βt are sufficiently large, we can guarantee that
the average recommendation x̄ := 1

B (β1x1 + · · · + βTxT)

where B := β1 + · · ·+ βT satisfies

max{0, g}(x̄) ≤ 1

B

T∑
t=1

βt max{0, g}(xt) =
1

B

∑
t∈τg

βtg(xt)

≤ 1

B

(
RT(X ,L) + min

x̂∈Xg

{
T∑
t=1

`t(x̂− xt)
})

,

where the first inequality follows by convexity of the max-
function max{0, g}, while the second inequality follows by
(5). In particular, if B =

∑T
t=1 βi � TLD, where L is an

upper bound on the norm of any loss function `(·) and D is
an upper bound on the diameter of Xg , max{0, g(x̄)} → 0
as T → ∞. Thus, one practical choice would be to have
βt = β̄ for some constant β̄. If L and D are known ahead of
time then β̄ can be chosen to guarantee a specific bound on
the violation of g(x) ≤ 0. Alternatively, the βt can be cho-
sen by a regret minimizer which sees the constraint violation
at time t (that is, a positive value of g(xt)) as its loss.

We conclude the subsection by pointing out two major
drawbacks of this approach for intersections:

1. The recommendation only converges to the domain Xg on
average. Thus, formally the construction does not show
how to construct a (Xg,L)-regret minimizer, but only how
to “approximate” one. The next subsection shows how to

2At this point, it might seem tempting to recognize in the term
in parentheses in (5) the cumulative regret of a (Xg,L)-regret min-
imizer. This would be incorrect, since the recommendations xt are
not guaranteed to satisfy g(xt) ≤ 0.

solve this problem by providing a generic construction
for a (X ∩ Y,L)-regret minimizer, a strictly more gen-
eral task.

2. The construction we just gave requires large penalization
factors βt in order to work properly. However, this means
that the norm of ˜̀t� is extremely large, making the task of
minimizing the regret RT(X ,L) significantly harder.

Intersection with a closed convex set

We consider the problem of constructing a (X ∩Y,L)-regret
minimizer from a (X ,L)-regret minimizer, where Y is a
closed convex set. As it turns out, the task is always possible,
and can be carried out by letting the (X ,L)-regret minimizer
give recommendations in X , and then projecting them onto
the intersection X ∩ Y .

For ease of notation, we will denote the projection
πX∩Y(x) of a point x ∈ X onto X ∩ Y as [x]; it is a well-
known fact that such projection always exists and is unique
since X ∩ Y is closed and convex. The cumulative regret of
the (X ∩ Y,L)-minimizer is then

RT(X∩Y,L) =

T∑
t=1

`t([xt])− min
x̂∈X∩Y

{
T∑
t=1

`t(x̂)

}

=

T∑
t=1

`t([xt]− xt)− min
x̂∈X∩Y

{
T∑
t=1

`t(x̂− xt)
}
,

where the second equality holds by linearity of `t. Applying
the variational inequality for projections, that is

〈xt − [xt], x̂− [xt]〉 ≤ 0 ∀ x̂ ∈ X ∩ Y,
we find that, provided αt ≥ 0 for all t,

min
x̂∈X∩Y

{
T∑
t=1

`t(x̂− xt)
}
≥ min
x̂∈X∩Y

{
T∑
t=1

`t(x̂− xt)

+

T∑
t=1

αt〈xt − [xt], x̂− [xt]〉
}
.

The role of the αt coefficients is to penalize choices of xt
that are in X \ Y . In particular, assume that

T∑
t=1

αt‖[xt]− xt‖2 ≥
T∑
t=1

`t([x
t]− xt). (6)

Then, we can write

RT(X∩Y,L) ≤
T∑
t=1

αt‖[xt]− xt‖2 − min
x̂∈X∩Y

{
T∑
t=1

`t(x̂− xt)

+

T∑
t=1

αt〈xt − [xt], x̂− [xt]〉
}
.

≤
(

T∑
t=1

`t(xt) + αt〈xt − [xt], xt〉
)

−min
x̂∈X

{
T∑
t=1

`t(x̂) + αt〈xt − [xt], x̂〉
}
,

which is the regret observed by a (X ,L)-regret minimizers
that at each time instant t observes the linear loss function

˜̀t : x 7→ `t(x) + αt〈xt − [xt], x〉. (7)

Hence, as long as condition (6) holds, the regret circuit of
Figure 9 is guaranteed to work. On the other hand, condi-
tion (6) can be trivially satisfied by the deterministic choice

(X ∩ Y,L)

(X ,L) [xt]

[xt−1]

πX∩Y
+

`t−1 ˜̀t−1

αt−1〈xt−1 − [xt−1], · 〉

xt

xt−1

Figure 9: Regret circuit representing the construction of a
(X ∩ Y,L)-regret minimizer using a (X ,L)-regret mini-
mizer.

αt =

0 if xt ∈ X ∩ Y
max

{
0,
`t([xt]− xt)
‖[xt]− xt‖2

}
otherwise.

The fact that αt can be arbitrarily large (when xt and [xt]
are very close) should not worry. Indeed, αt is only used in
˜̀t (Equation (7)) and is always multiplied by a term whose
magnitude grows proportionally with the distance between
xt and [xt]. In fact, ˜̀t is bounded by

‖˜̀t‖ ≤ ‖`t‖+
`t([xt]− xt)
‖[xt]− xt‖ ≤ ‖`

t‖+ ‖`t‖ = 2‖`t‖.

In other words, our construction dilates the loss function
bound by (at most) a factor 2.

Application: CFR with Strategy Constraints
When solving EFGs there may be a need to add addi-
tional constraints beyond simply computing feasible strate-
gies. Such needs can arise for several reasons:
• Opponent modeling. If we observe repeated play from an

opponent we may wish to constrain our model of their
strategy space to reflect such observations. Since obser-
vations can in general be consistent with several informa-
tion sets belonging to the opponent this requires adding
constraints that span across information sets.

• Bounding the probability of events. For example in a pa-
troling game we may wish to ensure that a patrol returns
to its base at the end of the game with high probability.

• Nash-equilibrium refinement computation. Refinements
can be computed, or approximated, via perturbation of
the strategy space of each player. For extensive-form per-
fect equilibrium this can be done via lower-bounding the
probability of each action at each information set (Fa-
rina and Gatti 2017), which can be handled with small
modifications to standard CFR or first-order methods (Fa-
rina, Kroer, and Sandholm 2017; Kroer, Farina, and
Sandholm 2017). However the, arguably superior, quasi-
perfect equilibrium requires perturbations on the prob-
ability of sequences of action (Miltersen and Sørensen
2010), which requires strategy constraints that cross in-
formation sets.
All the points above potentially require adding strat-

egy space constraints that span across multiple informa-
tion sets. Such constraints break the recursive nature of the
treeplex, and are thus not easily incorporated into standard
regret-minimization or first-order methods for EFG solving.

Davis, Waugh, and Bowling (2018) propose a Lagrangian-
relaxation approach called Constrained CFR (CCFR): each
strategy constraint is added to the objective with a La-
grangian multiplier, and a regret minimizer is used to penal-
ize violation of the strategy constraints. The authors prove
that if the regret minimizer for the Lagrange multipliers has
the optimal Lagrangian multipliers as part of their strat-
egy space then this approach converges to a solution to
the strategy-space-constrained game. However, they do not
prove a bound on the size of this set, and so in general re-
quire repeatedly running CCFR in order to binary search the
size of this strategy space.

Two alternative variants of CFR for EFGs with strategy
constraints can be obtained by our framework. We already
proved that CFR can be constructed from our framework.
In order to additionally support strategy constraints we can
apply either our method for Lagrangian relaxation of X and
a constraint g(x) ≤ 0, or we can apply our intersection ap-
proach, which requires projection. Our Lagrangian approach
yields an algorithm similar to the CCFR algorithm. How-
ever, our approach has some major improvements, perhaps
most importantly we can pick the size of our Lagrangian
multipliers ahead of time, and so do not require any binary
search in order to find the correct Lagrangian multipliers.
Our approach also supports, but does not require, regret min-
imization for the Lagrangian multipliers, since we put no
constraints on the form of the βt multipliers. If we are will-
ing to pay the cost of projecting onto X ∩ {x : g(x) ≤ 0}
then a very different regret-minimization approach can be
obtained by combining CFR with our intersection operation.
This approach has the major advantage that it produces fea-
sible iterates, but projection may not always be desirable for
computational reasons.

Conclusion and Future Research
We developed a calculus of regret minimization, which en-
ables the construction of regret minimizers for complex con-
vex sets that can be expressed as a series of convexity-
preserving operations on simpler sets. We showed that our
calculus can be used to construct the CFR algorithm directly,
as well as several variants of the algorithm for the case where
we have strategy constraints. However, our regret calculus is
much more broadly applicable than just EFGs: it applies to
any setting where the decision space can be expressed via
the convexity-preserving operations that we support. In the
future we plan to investigate novel applications of our regret
calculus. One potential application would be online portfo-
lio selection with additional constraints (e.g. capacity con-
straints across industries); our framework makes it easy to
construct such a regret minimizer from any standard online-
portfolio-selection algorithm.

We also plan to use our construction for CFR with strat-
egy constraints to test whether the fact that we have explicit
bounds on the Lagrangian multipliers leads to practically su-
perior algorithm as compared to Davis, Waugh, and Bowl-
ing (2018). We also plan to investigate how much better the
projection-based algorithm does in terms of iteration com-
plexity, and whether that makes up for the additional cost of
projection.

References
[2015] Bowling, M.; Burch, N.; Johanson, M.; and Tam-
melin, O. 2015. Heads-up limit hold’em poker is solved.
Science 347(6218).

[2004] Boyd, S., and Vandenberghe, L. 2004. Convex Opti-
mization. Cambridge University Press.

[2017] Brown, N., and Sandholm, T. 2017. Superhuman AI
for heads-up no-limit poker: Libratus beats top profession-
als. Science eaao1733.

[2017] Brown, N.; Kroer, C.; and Sandholm, T. 2017. Dy-
namic thresholding and pruning for regret minimization. In
AAAI Conference on Artificial Intelligence (AAAI).

[2018] Davis, T.; Waugh, K.; and Bowling, M. 2018. Solving
large extensive-form games with strategy constraints. arXiv
preprint arXiv:1809.07893.

[2017] Farina, G., and Gatti, N. 2017. Extensive-form per-
fect equilibrium computation in two-player games. In AAAI
Conference on Artificial Intelligence (AAAI).

[2017] Farina, G.; Kroer, C.; and Sandholm, T. 2017. Regret
minimization in behaviorally-constrained zero-sum games.
In International Conference on Machine Learning (ICML).

[2019] Farina, G.; Kroer, C.; and Sandholm, T. 2019. Online
convex optimization for sequential decision processes and
extensive-form games. In AAAI Conference on Artificial In-
telligence (AAAI).

[2006] Grant, M.; Boyd, S.; and Ye, Y. 2006. Disciplined
convex programming. In Global optimization. Springer.
155–210.

[2008] Grant, M.; Boyd, S.; and Ye, Y. 2008. Cvx: Matlab
software for disciplined convex programming.

[2000] Hart, S., and Mas-Colell, A. 2000. A simple adaptive
procedure leading to correlated equilibrium. Econometrica
68:1127–1150.

[2010] Hoda, S.; Gilpin, A.; Peña, J.; and Sandholm, T. 2010.
Smoothing techniques for computing Nash equilibria of se-
quential games. Mathematics of Operations Research 35(2).

[2015] Kroer, C.; Waugh, K.; Kılınç-Karzan, F.; and Sand-
holm, T. 2015. Faster first-order methods for extensive-
form game solving. In Proceedings of the ACM Conference
on Economics and Computation (EC).

[2018] Kroer, C.; Waugh, K.; Kılınç-Karzan, F.; and Sand-
holm, T. 2018. Faster algorithms for extensive-form game
solving via improved smoothing functions. Mathematical
Programming 1–33.

[2017] Kroer, C.; Farina, G.; and Sandholm, T. 2017.
Smoothing method for approximate extensive-form perfect
equilibrium. In Proceedings of the International Joint Con-
ference on Artificial Intelligence (IJCAI).

[2018] Ling, C. K.; Fang, F.; and Kolter, J. Z. 2018. What
game are we playing? End-to-end learning in normal and
extensive form games. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI).

[2011] McMahan, B. 2011. Follow-the-regularized-leader
and mirror descent: Equivalence theorems and l1 regulariza-

tion. In International Conference on Artificial Intelligence
and Statistics (AISTATS), 525–533.

[2010] Miltersen, P. B., and Sørensen, T. B. 2010. Comput-
ing a quasi-perfect equilibrium of a two-player game. Eco-
nomic Theory 42(1).

[2017] Moravčı́k, M.; Schmid, M.; Burch, N.; Lisý, V.; Mor-
rill, D.; Bard, N.; Davis, T.; Waugh, K.; Johanson, M.; and
Bowling, M. 2017. Deepstack: Expert-level artificial intel-
ligence in heads-up no-limit poker. Science 356(6337).

[2015] Tammelin, O.; Burch, N.; Johanson, M.; and Bowl-
ing, M. 2015. Solving heads-up limit Texas hold’em. In
Proceedings of the 24th International Joint Conference on
Artificial Intelligence (IJCAI).

[1996] von Stengel, B. 1996. Efficient computation of behav-
ior strategies. Games and Economic Behavior 14(2):220–
246.

[2007] Zinkevich, M.; Bowling, M.; Johanson, M.; and Pic-
cione, C. 2007. Regret minimization in games with incom-
plete information. In Proceedings of the Annual Conference
on Neural Information Processing Systems (NIPS).

[2003] Zinkevich, M. 2003. Online convex programming
and generalized infinitesimal gradient ascent. In Interna-
tional Conference on Machine Learning (ICML), 928–936.

