
Approximated Temporal-Induced Neural Self-Play
for Finitely Repeated Bayesian Games

Zihan Zhou,1 Zheyuan Ryan Shi,2 Yi Wu,3 Fei Fang2

1Shanghai Jiao Tong University, 3OpenAI, 2Carnegie Mellon University,
footoredo@sjtu.edu.cn, ryanshi@cmu.edu, jxwuyi@gmail.com, feif@cs.cmu.edu

Abstract

In two-player finitely repeated Bayesian games with one-
sided incomplete information, there is a natural information
asymmetry among the players. In each round of the game, the
player with information disadvantage needs to infer the other
player’s type from their actions. The other player, knowing
that their actions reveal information about themselves, will
balance between playing myopically and maintaining infor-
mation advantage to maximize their accumulated payoff in
the long-run, which can lead to deceptive actions. Comput-
ing the Perfect Bayesian Nash Equilibrium (PBNE) in such
games can be computationally intractable for large games. In
this paper, we propose a new learning-based framework to ap-
proximate PBNEs, which uses non-parametric approximation
and reinforcement learning from self-play. Our initial results
show that it can improve the scalability over existing methods
and lead to strategy profiles that are close to PBNEs.

1 Introduction
Repeated games with incomplete information is a typical
type of games to model long term strategic interactions. In
these games, the default solution concept is the Bayesian
Nash equilibrium (BNE) (Harsanyi 1968). However, a key
problem with BNE is that the equilibrium strategy may not
be rational off the equilibrium path. This is problematic, in
part, because in the real world everyone is not fully rational
and thus may deviate from the equilibrium path. When some
player deviates from the equilibrium path, the BNE strategy
for the other players might be arbitrarily suboptimal. To fix
this problem, a variety of Nash equilibrium refinements have
been studied. In this paper, we focus on the perfect Bayesian
Nash equilibrium (PBNE) (Cho and Kreps 1987), which is
a “first-order refinement” of BNE. PBNE is analogous to
the subgame perfect equilibrium in the perfect information
games, which ensures that the players’ equilibrium strate-
gies are rational at every decision point.

The study of equilibrium refinements is not new in eco-
nomics (Kreps and Wilson 1982; Bielefeld 1988), and
the computational aspect of equilibrium refinements has
started to receive some interest recently (An et al. 2011;

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Etessami et al. 2014; Hansen and Lund 2018). The cur-
rent effort can be grouped into two classes: mathemati-
cal programming-based approaches (Nguyen et al. 2019;
Farina and Gatti 2017) and iterative methods (Kroer, Farina,
and Sandholm 2017). However, iterative methods only apply
to zero-sum games, while mathematical programming-based
approaches can hardly scale beyond the simplest toy exam-
ples (as detailed in Section 2). On the other hand, deep re-
inforcement learning (RL) has shown great promise in com-
plex sequential decision-making for both single-agent and
multi-agent settings (Mnih et al. 2015; Silver et al. 2018;
Kamra et al. 2019). Deep RL often leverages a compact rep-
resentation of the game’s state and the players’ action space,
which makes it possible to handle large games that are in-
tractable for non-learning-based methods. However, to our
knowledge, no prior work has applied reinforcement learn-
ing to compute equilibrium refinements in extensive-form
games.

As an initial attempt to close the gap between theory and
practice, we propose Approximated Temporal-Induced Neu-
ral Self-Play, a backward induction-fashioned policy gra-
dient self-play algorithm to solve the PBNE in two-player
general-sum finitely repeated Bayesian games. We make
the following contributions. (1) We propose a belief-based
learning algorithm to deal with scalability issue. In finitely
repeated Bayesian games, the number of information set in
the game tree grows exponentially with the number of time
steps. We transform the game into a belief-based game that
is easier for learning algorithm to generalize to deal with
this problem. (2) We propose a backward induction fash-
ioned learning schedule to achieve PBNE. In traditional top-
down learning algorithms, the solution quality in a subgame
is influenced by the visiting frequency of that state, which
may result in unbalanced solution quality among subgames.
We eliminate this imbalance by backward induction. (3) We
propose a non-parametric policy approximation algorithm
to improve the solution quality. In our initial attempts, we
find neural networks by themselves unable to carry out ideal
solutions in our belief-based algorithms due to sample inef-
ficiency. We therefore propose a non-parametric approxima-
tion algorithm to alleviate the pressure on neural networks.

2 Related Work
Repeated games with incomplete information have been ex-
tensively studied in mathematics and economics (Forges
1992). The literature mostly focuses on infinitely repeated
games, where finitely repeated games are used as a tool to
analyze the convergence behavior in the former. We develop
algorithmic results for finitely repeated games. Generaliz-
ing from repeated games to stochastic games (Sorin 2003)
poses little technical difficulty to our proposed algorithms.
For expository purpose, we use finitely repeated games to
illustrate our algorithm. Previous work has proposed al-
gorithms for various models of Bayesian stochastic games
with bounded rationality (Chandrasekaran, Chen, and Doshi
2017) or in specific application domains (Albrecht and Ra-
mamoorthy 2013). In contrast, we aim to solve a general
repeated Bayesian game with rational agents.

Existing literature on computing refinements of Nash
equilibria mainly takes two approaches: the mathematical
programming-based approach and the iterative approach.
(Nguyen et al. 2019) shares the most similar goal with
our paper. They use a high-order mathematical program to
compute a PBNE in the Bayesian repeated games. A few
works use linear complementary programming to compute
other equilibrium refinements such as the extensive-form
perfect equilibria (EFPE) (Farina and Gatti 2017) and quasi-
perfect equilibria (Miltersen and Sørensen 2010). However,
all these mathematical programming based approaches have
very limited scalability. On the other hand, iterative ap-
proaches like counterfactual regret minimization (Zinkevich
et al. 2008) and excessive gap technique (Nesterov 2005)
have proven to be scalable for computing NE in large EFGs
like poker (Brown and Sandholm 2018). Farina et al. (2017)
and Kroer et al. (2017) adapt them to approximate EFPE.
However, these approaches are designed specifically for
zero-sum games while we consider the significantly harder
(PPAD-hard) case of general-sum games.

Deep reinforcement learning can often efficiently solve
large scale sequential decision-making problems (Mnih et
al. 2015; 2016) in complex games such as Go (Silver et al.
2018). Multi-agent RL deals with the coordination and com-
petition among multiple players and is thus a natural tool
for solving EFGs (Hu, Wellman, and others 1998). There
has also been real world success like StarCraft (Vinyals et
al. 2019). For zero-sum games, various algorithms (Littman
1994; Heinrich, Lanctot, and Silver 2015) are guaranteed to
converge to NE in principle. We focus on finding a PBNE, a
refinement of NE, in repeated Bayesian games.

3 PBNE in Finitely Repeated Bayesian
Games

We consider a finitely repeated Bayesian game of two play-
ers: player 1 and player 2. Player 2 has a type � 2 �, which
is drawn at the beginning of the game according to a pub-
lic prior distribution p = fp� :

P
� p

� = 1; p� 2 [0; 1]g.
While p is public, the actual type � is known only to player
2.

The game has T rounds. At round t of the game, both
players simultaneously take an action a1

t ; a
2
t 2 A, where A

is a finite action space of size N . Then, player 1 receives
a real-valued reward r1(a1

t ; a
2
t), and player 2 of type � re-

ceives a real-valued reward r2�(a1
t ; a

2
t), based on reward

functions r1; r2� : A � A ! R. Both players aim to maxi-
mize their cumulative reward. A player’s action will be visi-
ble to the other player at the end of the round.

The history is a tuple of all the actions both players have
taken up to a particular round, and thus the set of histories is
H =

ST
t=0Ht =

ST
t=0(A�A)t.

Player 1’s strategy x and a type � player 2’s strategy
y� are mappings from the set of histories H n HT to a
distribution over actions A. We assume perfect recall, and
thus it suffices to consider the behavioral strategies. We use
x(i jht) to represent player 1’s probability of taking action
i 2 A in round t + 1 after a history ht, and use y�(j jht)
to represent the probability of the player 2 of type � taking
action j 2 A in round t+ 1 after a history ht.

Although player 1 does not know player 2’s type �, player
1 may form and update belief of the type according to the
action player 2 chooses at every round if he knows player
2’s strategy. Specifically, given y�, 8�, after a history ht =
(a1

1; a
2
1; : : : ; a

1
t ; a

2
t), player 1 uses Bayes rule to update a

posterior belief of p(�jht) / p�
Qt
�=1 y

�(a2
� jh�) for each

� 2 �.
For the last time step T , with a history hT�1, two players’

expected utilities are

EU1
T (x; y jhT�1)

=
X
�2�

p(� jhT�1)
X
i;j2A

x(i jhT�1)y�(j jhT�1)r1(i; j)

EU2�
T (x; y jhT�1)

=
X
i;j2A

x(i jhT�1)y�(j jhT�1)r2�(i; j); 8� 2 �

Then, we consider time step t+ 1 < T , with history ht.

EU1
t+1(x; y jht) =

X
�2�

X
i;j2A

p(� jht)x(i jht)y�(j jht)r1(i; j)

+
X
�2�

X
i;j2A

p(� jht)x(i jht)y�(j jht) EU1
t+2(x; y j (ht; i; j))

EU2�
t+1(x; y jht) =

X
i;j2A

x(i jht)y�(j jht)r2�(i; j)

+
X
i;j2A

x(i jht)y�(j jht) EU2�
t+2(x; y j (ht; i; j)); 8� 2 �

We are now ready to introduce PBNE. Roughly speaking,
PBNE requires both players to choose strategies that maxi-
mize their own expected utility starting from every possible
history.

Definition 1 A PBNE in a finitely repeated Bayesian game
is a pair of strategies (x�; y�) such that for every history
ht 2 H nHT ,

EU1
t (x
�; y� jht) � EU1

t (x
0; y� jht);8x0

EU2�
t (x�; y� jht) � EU2�

t (x�; y0 jht);8y0;8�

Figure 1: Network structure for RNN-based approach.

Nguyen et al. (2019) compute a PBNE is by using a math-
ematical program to encode all the utility constraints in the
definition of PBNE. While this leads to, in theory, an exact
solution, the algorithm can hardly scale, because the num-
ber of possible action histories grows exponentially with the
size of the action space and time horizon. In the sequel, we
present a learning-based approach to approximately com-
pute a PBNE.

Two remarks are in order. First, although as a prelimi-
nary work we only consider one-sided incomplete informa-
tion, the setup and our algorithmic results below can easily
be extended to incomplete information on both sides. Sim-
ilarly, extending the framework to stochastic games, where
the stage game at each round could be different, also does
not pose much technical difficulty.

4 Algorithm
Our learning-based approach is based on the the policy gra-
dient (PG) algorithm in RL (Sutton et al. 2000). Let � be a
policy parameterized by �, and maps from a description of
the current state and an action to a proability, i.e., ��(ajs) in-
dicates the probability of taking action a given state (or state
description) s following policy ��. PG has its foundation in
the policy gradient theorem

r�E�[r] = E�[r� log ��(ajs)Q�(s; a)]

where r is the reward for taking action a at state s where
(s; a) is sampled from the distrbution induced by �, and Q�
is the state-value function of policy �.

The Recurrent Neural Network (RNN) (Werbos 1990) is
a generalization of feedforward networks to sequences. It
serves as a useful function approximator for domains with
sequences and has been applied to neural language process-
ing (Sutskever, Vinyals, and Le 2014) and RL (Wierstra et
al. 2010), among others. RNN is a natural fit for this prob-
lem, as the action history takes form of a long sequence,
which fits into the RNN structure perfectly. However, it fails
to handle the exponentially increasing game tree and can
have inconsistent subgame solution qualities, which contra-
dicts our pursuit for PBNE. Therefore, we propose Approx-
imated Temporal-Induced Neural Self-Play, which is capa-
ble of handling the exponential game tree with linear cost by
using a belief-based representation and have consistent solu-
tion qualities in all subgames by using a backward induction
styled learning scedule.

In the rest of the section, we first propose a simple imple-
mentation of the RNN-based approach and then present our
proposed algorithm Approximated Temporal-Induced Neu-
ral Self-Play in detail, explaining its advantages over the
RNN-based approach.

4.1 RNN-based approach
Player 1’s policy network takes as input both players’ action
history and output the strategy in the next round (a probabil-
ity distribution over the set of actions A). We use the one-hot
representation of both players actions (a1

� ; a
2
�) in the previ-

ous round and feed it to a RNN network as the � -th input.
Then we feed the hidden state in the last round ���1 into
a feed-forward network and apply a softmax layer to �t to
get the required distribution over actions for the (t + 1)-th
round. That is,

�� =RNN(���1; one-hot(a1
�); one-hot(a2

�)) (1)
x(�jht) =Softmax(feed-forward(�t)) (2)

The network structure is shown in Figure 1. Player 2’s net-
work has a very similar structure, except that there is an ad-
ditional input � indicating player 2’s type.

We use policy gradient self-play to train both agents (Alg.
1). In each training iteration, we fix one of the agents and
optimize another using policy gradient in turn. In the end,
we use the time-averaged strategy as the final mixed strat-
egy for each player. Instead of directly averaging over all
the strategies in each round, We further approximate the
time-averaged strategy by using the time-averaged network
weights for the actor network. Empirically, such training ap-
proach yields strategies close to Nash equilibrium in our
tested game setting.

Algorithm 1: Policy gradient self-play

Initialize �1
0; �

2
0;

for k = 1; 2; : : : ;maxIter do
�1
k PolicyGradientForPlayer1(�1

k�1; �
2
k�1);

�2
k PolicyGradientForPlayer2(�2

k�1; �
1
k);

return 1
maxIter

P
k �

1
k, 1

maxIter

P
k �

2
k,

4.2 Belief-based approach
Although RNN-based approach seems natural for this game,
it fails to address some major challenges of the game.

The structure of RNN is capable of dealing with long
action history. However, it comes with the cost of increas-
ing training resources. Generally, larger state space requires
larger networks, larger training batch and more training
episodes. The relationship between the action space and the
training parameters to ensure the same level of solution qual-
ity is very hard to argue, let alone the potential need to
change other scale-invariant hyperparameters such as learn-
ing rate.

On the other hand, we are trying to find the PBNE, which
is a refinement of NE that requires optimal strategies in all

subgames. In the RNN-based approach, the training vari-
ances in less visited subgames are higher, which can poten-
tially lead to unbalanced and even unboundedly low solution
quality in different subgames.

We can take another look at the game itself. To achieve
PBNE, the agents need to make Nash equilibrium strategies
for every subgame which is rooted at action history ht. This
is where the scalability issue comes up — there are expo-
nentially many subgames to solve. To address this problem,
rather than finding the optimal solution for every action his-
tory ht, we can instead ask the agents to make decisions
according to the belief of attacker’s type distribution at each
round of the game. Since we are dealing with finite attacker
type set, the belief can be represented as a j�j-dimensional
vector in the probability simplex �j�j. Now the agents need
to find a mapping from �j�j to strategy space �jAj. Despite
that the state space grows from a finite set to a continuous
space, we believe it is much easier for neural networks to
generalize.

To get the belief at any round, we use Bayes’ rule to up-
date the belief step by step along the way.

b�t+1 =
Pr[a�t = a2

t]b
�
tP

�′ Pr[a�
′
t = a2

t]b
�′
t

; (3)

where a�t is the random variable indicating the action that
player 2 with type �would take in round t, a2

t is the observed
action of player 2, and b�t is the probability that the player 2
is of type � given its actions up to round t� 1.

However, to do so, we require player 2 to reveal its proba-
bility of choosing a certain action, which is not a standard
practice in RL. Normally, revealing one player’s strategy
may cause unfairness issue. Since we are using self-play to
find the Equilibrium strategy, we do not need to take fair-
ness into consideration in the training phase. During eval-
uation, we need to convert the belief-based strategy to ac-
tion history based strategy. Suppose the result strategy is
�1; �2� : �j�j 7! �jAj, we can generate the action his-
tory based strategy �̂1; �̂2� : H 7! �jAj with the following
procedure.

Algorithm 2: Conversion from belief-based strategy
�1; �2� to action history based strategy �̂1; �̂2�.

Function Convert(b, h)
Data: b = fb�g, current belief
Data: h = f(a1

1; a
2
1); : : : ; (a1

t ; a
2
t)g, current

action history
�̂1(h) �1(b);
�̂2�(h) �2�(b) for every �;
for (a1; a2) 2 A�A do

b0 New belief assuming action a2 is taken
by player 2;

Convert(b0, h+ (a1; a2));

Convert(p, fg);

4.3 Backward induction
Since our objective is to find an approximate PBNE in
finitely repeated Bayesian games, instead of training the
whole game in a top-down manner where we train each sub-
game only when we visited them, we introduce a backward
induction training paradigm in which we train the problem
in a bottom up manner.

In backward induction training, we start training in the
bottom level subgame where there is only one round left.
The goal here is to train a subgame policy that maps any
belief to a strategy. Once the bottom level subgame policy
is trained, we move up a level to train for the subgames
that have two rounds left. However, when doing so, we only
train for the strategy at the beginning of that subgame. When
we collect experiences, for later games, we use previously
trained subgame policies to continue the simulation, then
sum up the all the rewards until the game ends and use that
cumulative reward to optimize our training policy. We de-
note the subgames where there are k rounds left subgame-k.
Suppose we are training subgame-k and all later subgame-
k0 where k0 < k has been trained, with the optimal policy
denoted as ��k′ . The policy that we are training is �k. In the
training of subgame-k, we are playing a surrogate game with
utility function û.

û(a1; a2�) = u(a1; a2�) +

k�1X
k′=1

u(a1�
k′ ; a

2��
k′) (4)

where a1�
k′ and a2��

k′ are sampled according to �1�
k′ and �2��

k′

and the updating belief along the way. We also use Policy
Gradient self-play to solve the surrogate game.

4.4 Non-parametric policy approximation
In practice, we propose a non-parametric approximation
method for training a policy that takes input any belief dis-
tribution. For each subgame-k, we first sampleK belief vec-
tors fb1; : : : ;bKg from �j�j. For each bK , we use Policy
Gradient self-play to find the optimal policy �K with fixed
type distribution bK . Then we add the belief strategy pair
(bK ; �K) to a strategy pool Dk.

For a new belief b that is not sampled before, we use a
distance based method to approximate the appropriate strat-
egy for that belief, stated as follows:

��k(b; �) �
P

(b′;�)2Dk
w(b;b0)�(�)P

(b′;�)2Dk
w(b;b0)

(5)

where

w(b;b0) � 1

max("; kb� b0k2)
(6)

5 Experiments
5.1 Security Game
We test our algorithm in finitely repeated simultaneous-
move security game as discussed in (Nguyen et al. 2019).
In this game, the behavior strategy profile for the defender is

a mapping from past action history ht to a probability distri-
bution over different resource distributions s, x = fx(sjht) :P

s x(sjht) = 1; x(sjht) 2 [0; 1]g . The strategy profile for
the attacker is a mapping from past action history ht to a
probability distribution over different targets for each type
�, y� = fy�(ijht) :

P
i y
�(ijht) = 1; y�(ijht) 2 [0; 1]g.

Evaluation Since this game is general-sum and can have
multiple PBNEs, we evaluate our solution quality by calcu-
lating the difference between the expected utility when play-
ing against each other and the expected utility of the best re-
sponse strategy to each player. Formally, for defender strat-
egy x and attacker strategy y = fy�g, the solution quality "
is defined as

" = max
�

EU(BR(y);y)� EU(x;y);

maxfEU�(x;BR�(x))� EU�(x;y�)g
	

We also check the PBNE quality by taking the maximum
difference in all subgames.

Game Setting We limit defender resources K = 1 and
test our algorithm on various number of targets jNj, number
of types j�j and number of time steps jTj.

Throughout our experiments, we set defender resources
to K = 1 and number of attacker types to j�j = 2. At-
tacker and defender’s rewards and penalties are generated
uniformly randomly from [1; 10] and [�10;�1] respectively.

5.2 Comparison with mathematical programming

We first compare our algorithm directly with the mathemati-
cal programming solution in (Nguyen et al. 2019). We show
that our algorithm can deal with the increase of numbers of
targets jNj and number of time steps jTj comfortably with
linear training time and space usage and linear solution qual-
ity loss while the mathematical programming method suffers
exponential cost increase both in time and space.

To showcase the scalability, we tested our algorithm in
jNj = 2 targets game with time step jTj 2 f1; 2; : : : ; 10g
and in jNj = 5 targets game with time step jTj 2
f1; 2; : : : ; 5g. For comparison, the mathematical program-
ming solution runs out of memory in 2 targets game when
jTj � 7 and in 5 targets game when jTj � 4.

Each entry in the table for our method is
the averaged difference over 11 different priors,
(0:0; 1:0); (0:1; 0:9); : : : ; (1:0; 0:0) in 4 different game
instances. The result is in Table 1.

5.3 Result analysis

Here we provide several tests to demonstrate the soundness
of our result.

Variance test We test our method on 4 different game in-
stances. We provide the solution quality (measured by utility
difference to best response)-jTj curve to show that our result
has a good consistency among different game seeds. The re-
sult is in Figure 2.

jNj jTj Baseline Ours
2 1 < 10�8 0.112
2 2 � 10�8 0.224
2 3 � 10�7 0.354
2 4 � 10�6 0.470
2 5 � 10�5 0.570
2 6 � 10�5 0.681
2 7 N/A 0.769
2 8 N/A 0.909
2 9 N/A 0.994
2 10 N/A 1.130
5 1 � 10�6 0.254
5 2 � 10�6 0.531
5 3 � 10�3 0.839
5 4 N/A 1.259
5 5 N/A 1.804

Table 1: Solution quality comparison between baseline
method and ours.

PBNE test To demonstrate that our algorithm is capable of
finding a Perfect Bayesian Nash Equilibrium, we record our
solution quality in every subgame rooted on action history
ht. We then take the maximum difference in all

PjTj
t=0 jNjt

subgames and divide it by the overall difference. Notice that
the overall difference is also a subgame (with action history
fg) difference, which guarantees the ratio to be no less than
1. The result is shown in Figure 3. We observe that with 95%
confidence the solution quality in every subgame is no worse
than 10% of the overall solution quality.

Convergence test We run the Policy Gradient self-play al-
gorithm on two sample settings and record the solution qual-
ity curve against training iterations. We observe that in both
cases the difference in expected utilities are gradually reduc-
ing. However, in the second case, the lower bound of the dif-
ference is bounded by the results in previously trained poli-
cies.

5.4 Attacker deception analysis
We also analyze the attacker’s deception behaviour in our
result. We quantify attacker’s incentive to deceive by calcu-
lating the KL divergence between a PBNE attacker’s strat-
egy and a myopic attacker’s strategy. The result is shown in
Figure 5. From the figure we can see that more rounds and
less prior probability can both boost the attacker’s incentive
to deceive. We also show the averaged KL divergence for
different jTj to demonstrate the increasing incentive to de-
ceive with more time steps in Figure 5c. We can also observe
that the growth rate of KL divergence gradually slows down.
Which gives us a hint that for even longer games, the strat-
egy for each round may converge.

Furthermore, we introduce another parameter - �, to ma-
nipulate the attacker’s incentive to deceive. In the i-th turn
of the game, the reward (utility) for both players in that turn
will be multiplied by �i�1. (i = 1; 2; : : : , jTj) Our nor-
mal setting corresponds to � = 1 and myopic playing (stage
game equilibrium) corresponds to � = 0. Larger � will de-

