
Efficient Exploration with Failure Ratio for Deep Reinforcement Learning

Minori Narita1 and Daiki Kimura2

1University of Massachusetts, Amherst, United States
2IBM Research AI, Japan

1mnarita@umass.edu, 2daiki@jp.ibm.com,

Abstract

A combination of Monte Carlo tree search (MCTS) and deep
reinforcement learning has demonstrated incredibly high per-
formance and has been attracting much attention. However,
the convergence of learning is very time-consuming. When
we want to acquire skills efficiently, it is important to learn
from failure by locating its cause and modifying the strat-
egy accordingly. Using the analogy of this context, we pro-
pose an efficient tree search method by introducing a failure
ratio that has high values in important phases. We applied
our method to Othello board game. In the experiments, our
method showed a higher winning ratio than the state-of-the-
art method, especially in the early stages of learning.

Introduction
Reinforcement learning (RL) has been attracting much at-
tention recently. Deep Q networks (Mnih et al. 2015) and
other algorithms have been proposed for various game ap-
plications (Pathak et al. 2017; Kimura et al. 2018; Sil-
ver, Huang, and et al. 2016; Silver et al. 2017). Al-
phaGo (Silver, Huang, and et al. 2016) was the first al-
gorithm to beat a human professional player in a full-size
game of Go. AlphaZero (Silver et al. 2017) has also demon-
strated an astounding performance by surpassing profes-
sional Shogi (Japanese chess) players after only 24 hours
of training, thus reducing the amount of huge training data
required previously. These achievements were obtained by
integrating an adversarial setting called “self-play.”

The learning process of AlphaZero (Silver et al. 2017)
consists of the following two phases: self-play to create
training data by utilizing Monte Carlo tree search (MCTS),
and the update of deep network parameters using the train-
ing data obtained in the previous step. MCTS is an algo-
rithm that searches the action that gives high mean rewards
by multiple simulations of the gameplay. In AlphaZero (Sil-
ver et al. 2017), it takes the balance between exploration and
exploitation by taking the summation of the predicted win-
ning ratio and the upper confidential bound that weighs the
exploration of nodes less visited by the agent.

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

However, AlphaZero has a huge computational cost; it
requires 5,000 TPU for self-play and 64 GPU for network
updates. Recently, some methods such as prioritized experi-
ence replay (Schaul et al. 2015) have been proposed to over-
come this issue by means of weighing exploration. In this
method, data sampling is prioritized based on temporal dif-
ference (TD) to make the learning more efficient. However,
as the method weighs training data to decide which samples
should be drawn next, it contributes to the efficiency only af-
ter the agent has experienced an episode. Therefore, we need
to improve the efficiency of the self-play process, which cre-
ates the training data used in the network updates.

On the other hand, when we humans acquire skills, it is
important to learn from failure, finding its cause and modi-
fying the strategy accordingly. The above process can help
to avoid making the same mistake again. For example, when
we play a board game, there are moments when we want
to cancel the last action. In a practice environment, we can
cancel the last move and try a different move, which is called
’undo’. These situations are most likely to be important for
determining the winner. Using the analogy of this concept,
we assume that the learning efficiency can be improved if
the algorithm weighs the exploration of specific moves con-
sidered as failure moves.

Therefore, we propose a framework that encourages ex-
ploration of critical situations leading to failures. To weigh
critical situations, we apply weighing to the tree search di-
rectly. We define the failure ratio as a difference between the
Q-value (the value of the actions according to specific situa-
tions) of the current move and that of the previous move. It
encourages the agents to do a prioritized exploration of situ-
ations that make the difference between winning and losing.
We evaluate our method by using multiple Othello settings
and compare it with the existing method (Silver et al. 2017).
Our study offers the following contributions:
• Introducing a novel idea of “failure ratio”, which utilizes

the gap between the current predicted winning ratio and
the previous ratio;

• Making the self-play process efficient by weighing the im-
portant phases for winning with the failure ratio;

• Evaluating our method on Othello and achieving a higher
winning ratio than AlphaZero in the early learning stages.

1. Create training data from self-play

𝑄 = 0.2

Failure ratio: +0.3
𝑼′ = 0.8

Take a corner
A corner is taken

𝑄 = 0.7

𝑄 = 0.6

2. Train

𝜃

…

𝒑 𝑣

𝑄 = 0.5

Figure 1: Overview of the learning architecture with failure
ratio in Othello

Proposed Method
The overview of our proposed method is shown in Fig. 1. As
in AlphaZero, the learning process consists of the combina-
tion of self-play to create training data and the parameters
update of the policy and value networks. In self-play, the
agent runs simulations of the game to generate training data.
We integrated the notion of failure ratio into this self-play
architecture. The second phase, or the parameter updates,
follows the same way as in AlphaZero. In other words, us-
ing the training data obtained from self-play, the agent takes
the board st as an input and the probability of choosing ac-
tion p = P (a|st) and the expected return v ≈ E[Rt|st, at]
as outputs to learn parameter θ of the network (p, v) = f(θ).

In AlphaZero, the training data is produced by self-play
using MCTS, and the parameters of the policy and value
function networks are updated using this data. The MCTS
algorithm searches a tree consisting of nodes, each of which
corresponds to a different configuration of the board. Each
node maintains the expected return for each state-action
pair (Q(st, at)), and the number of times the agent vis-
ited a specific state-action pair in a simulation (N(st, at)).
Q(st, at) is the predicted winning ratio when the agent
chooses action at in state st. Each node also holds a prob-
ability of taking action at from state st if the agent follows
the current policy (P (st, at)). Then, AlphaZero expands the
tree, maximizing the predicted winning ratio with the upper
confidence bound U(st, at), which is the summation of the
predicted winning ratio Q(st, at) and the upper confidence
bound b(st, at) that weighs less visited nodes. b(st, at) is
calculated from the above P (st, at) and N(st, at) values
from each node. Hence, the agent goes down the tree from
the root, expanding nodes by selecting the action that maxi-
mizes U(st, at). U(st, at) is calculated as follows:

U(st, at) = Q(st, at) + b(st, at), (1)

b(st, at) = P (st, at)

∑
aN(st, a)

1 +N(st, at)
. (2)

In this study, we introduce a “failure ratio” and integrate
it into the calculation for U(st, at) (Eq. 1) for prioritizing
important situations in self-play. We assume the failure ra-
tio is calculated from the difference between the next pre-
dicted winning ratio and the current predicted winning ratio
of the same agent. The next predicted winning ratio is the
ratio of two time-steps ahead, because one step ahead is the
opponent’s turn. The definition of the failure ratio f(st, at)
is described in Eq 4. Q(st+2, at+2) denotes the predicted
winning ratio at time t+2 (the agent’s next turn), two time-
steps ahead of the current node at time t. When the failure
ratio is high, the action at at time t will correspond to the
failure action because the winning ratio will decrease com-
pared to the previous value. In contrast, if the failure ratio
is low, the action at is regarded as a good move. Hence, our
method encourages agents to select good actions and dis-
courages failure moves during the exploration in self-play.

The failure ratio at time t is updated when the Q-value
of two time-steps ahead is given, like in SARSA (Rummery
and Niranjan 1994). We define the weighted winning ratio
used for tree exploration as a summation of the failure ratio
and U(st, at) in AlphaZero.

We also introduced a decay factor to this failure ratio. We
hypothesized that although the failure ratio is effective at
first, its effectiveness decreases as the learning proceeds and
as enough failure cases are stored to be learned. If the agent
continues learning these failure cases, the parameters will be
updated and the agent goes to failure patterns. Therefore, the
failure ratio should be decreased according to the progress of
learning. The decay factor decreases the weight of the failure
ratio by exponential order at each iteration. The predicted
winning ratio in our method (U ′(st, at)) is as follows:

U ′(st, at) = U(st, at) + γnepαf(st, at) (3)

f(st, at) = Q(st, at)−Q(st+2, at+2), (4)

where α is a weight that controls the effectiveness of the
proposed failure ratio, γ is a hyperparameter for the decay
factor, and nep denotes the current epoch index defined as
starting from zero. Our proposed architecture collects train-
ing data using MCTS with U ′(st, at).

Experiments
We evaluate our proposed method in 6 × 6 and 8 × 8 Oth-
ello environments. Note that 6×6 denotes the board size. To
check the transition of the winning ratio over iterations, we
compare our method with the state-of-the-art method (Sil-
ver et al. 2017) by conducting matches in each iteration of
the training phase. One iteration is defined as a cycle that
consists of self-play and training, as described in Fig. 1.

Since reinforcement learning is not stable in some random
seeds, we prepare 20 agents with different random seeds
for each method and then conduct matches in all combi-
nations (round-robin); hence, each setting has 400 combi-
nations. Besides, even if we use the same combination, the
matching results will be different, so we execute 50 matches
for each. We therefore show the averaged winning ratio for
20, 000 matches in all of the following results. The definition

0.4

0.45

0.5

0.55

0.6

0 5 10 15 20 25 30

W
in

ni
ng

 ra
tio

Iterations

α=0.7, γ=1.0
α=0.7, γ=0.9

Figure 2: Winning ratio for each epoch of the proposed
method against AlphaZero in the 6×6 Othello environment.
We created 20 agents for each method and conducted all-
play-all. The winning ratio is averaged for 20,000 matches.
α is the weight for failure ratio, and γ denotes the decay
ratio. Moving averages over four iterations were performed.

0.4

0.45

0.5

0.55

0.6

0 5 10 15 20 25 30

W
in

ni
ng

 ra
tio

Iterations

α=1.5, γ=0.9
α=1.5, γ=0.8

Figure 3: Winning ratio for each epoch of the proposed
method against AlphaZero in the 6×6 Othello environment.
We created 20 agents for each method and conducted all-
play-all. The winning ratio is averaged for 20,000 matches.
Moving averages over four iterations were performed.

of the winning ratio in this paper is nwin/nlose, and we ig-
nore the number of draws. We train 30 iterations in all exper-
iments as we assume that our method is especially effective
in the early stage of training. We try some hyperparameter
settings in the experiments, and then we also confirm the sta-
bility of effectiveness of our failure ratio. In this experiment,
we use NVIDIA Tesla V100; it takes about 5 hours to train
one agent.

Results
Matches on 6× 6 Othello We evaluate the performance
of our proposed method against AlphaZero by calculating
the transition of the winning ratio in 6 × 6 Othello envi-
ronment with several hyperparameter settings. Figs. 2 and 3
show the transition results. Fig. 2 shows that our method
achieved around 54% ratio in the early stages of learn-
ing. The winning ratio of our method with a prioritized ra-
tio α = 0.7 and a decay rate γ = 0.9 settles down to around

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0 5 10 15 20 25 30

W
in

ni
ng

 ra
tio

Iterations

α=1.5, γ=0.8
α=0.7, γ=0.9

Figure 4: Winning ratio for each epoch of the proposed
method against AlphaZero in 8×8 Othello environment. We
created 20 agents for each method and conducted all-play-
all. Winning ratio is averaged for 20,000 matches. Moving
averages over four iterations were performed.

50% after the training converges, while at α = 0.7 and with-
out the decay factor (γ = 1.0) it is inferior to AlphaZero.
The result indicates that the decay factor plays an impor-
tant role in the proposed method; otherwise, the performance
against AlphaZero worsens.

Fig. 3 shows the transition of the winning ratio using dif-
ferent hyperparameters. Both models achieve a better win-
ning ratio than AlphaZero in the early stages of learning,
but the model with γ = 0.8 gets a better result than with
γ = 0.9, while γ = 0.9 was the best parameter when
α = 0.7. It indicates that the same decay ratio may not work
well for a bigger weight for failure ratio α.

Matches on 8× 8 Othello Fig. 4 shows the transition of
the winning ratio of our proposed method against AlphaZero
in 8×8 Othello environment over time. Our method demon-
strates a higher winning ratio than AlphaZero in the first 30
iterations. Moreover, it shows a 61.5% winning ratio against
AlphaZero at around 5th iteration at α = 0.7 and γ = 0.9,
which is much higher than the opponent’s. The results for
both models are almost as good as in AlphaZero. This indi-
cates that our method is stable with different hyperparame-
ters in 8× 8 Othello environment.

Discussion
Figure 2 indicates that the weight for failure ratio without
the decay factor harms the performance of the agent in the
latter part of the training. This is because it leads the agent
to learn how to approach the states that are close to a serious
mistake in the latter part of the training, which is not an opti-
mal strategy. Introducing the decay factor helps the agent to
learn efficiently only in the early phase of training and does
not interrupt the learning process near convergence.

From Figs. 2 and 3, we see that the model with α = 1.5,
γ = 0.9 performs much worse than the model with α = 0.7,
γ = 0.9, although we are using the same decay factor γ.
It indicates that γ = 0.9 is too big when α = 1.5. In this
sense, we understand how to tune these hyperparameters;
for example, when we increase the bigger weight, it is better

to decrease the decay ratio.
We notice that the difference in performance between Al-

phaZero and our method gradually decreases over time for
all cases in our experiments. This indicates that AlphaZero
also learns various patterns, including failure cases, when it
is given a sufficient amount of iterations. However, more im-
portantly, our method takes much less time than AlphaZero
to make the learning process converge.

As can be seen, the agents show much better results in the
8× 8 Othello environment than in the 6× 6 environment. A
possible reason is that the learning policy in 8 × 8 is much
more complicated than in 6 × 6, hence the more prominent
effectiveness of the failure ratio. This implies that the ef-
fectiveness of the failure ratio is more significant in more
difficult tasks such as Go or Shogi.

Related Work
Deep reinforcement learning in games has been attracting
more and more attention recently, and various algorithms to
achieve human-level performance in games have been pro-
posed (Mnih et al. 2015; Kimura 2018; Silver et al. 2017;
Wu and Tian 2017). DQN (Mnih et al. 2015) has become
one of the fundamental approaches for various gameplays.
It achieves high performance by combining deep neural net-
works and Q-learning with key components such as ex-
perience replay and the target network. DAQN (Kimura
2018) introduced auto-encoder architecture in DQN. Alp-
haZero (Silver et al. 2017) has achieved incredible perfor-
mance using a combination of deep neural networks and
MCTS. These methods are useful in discrete action spaces,
so various algorithms (Lillicrap et al. 2015; Mnih et al. 2016)
have also been proposed to deploy deep reinforcement learn-
ing in domains with continuous action spaces.

Monte-Carlo tree search (Browne et al. 2012) is a search
algorithm that combines the precision of the tree search
and the generality of random sampling. After it was first
introduced, various approaches to improve its performance
have been proposed (Osaki et al. 2008; Bjarnason, Fern, and
Tadepalli 2009; Browne et al. 2012). Temporal difference
learning with Monte Carlo (TDMC) (Osaki et al. 2008) uses
a combination of temporal difference learning and a win-
ning probability. (Bjarnason, Fern, and Tadepalli 2009) ap-
plied a combination of upper confidence trees (UCT) (Koc-
sis and Szepesvári 2006) and hindsight optimization (Yoon
et al. 2008) to a single-player stochastic game.

Prioritized experience replay (Schaul et al. 2015) employs
an idea similar to the one used in our method. It allows the
agent to store experiences and learn from the training data
sampled from the stored experience rather than from the on-
line sampling. Each data is weighed by the TD error, so that
“important” samples are more frequently drawn from the
buffer. It is widely used in various deep RL to improve the
performance. It is also expected that combining these two
approaches enables agents to learn even more efficiently.

Conclusion
We introduced a failure ratio into the Monte Carlo tree
search to enable a more efficient exploration in the early

stages of training for faster convergence of learning. We
used the difference between the current predicted winning
ratio and the previous ratio to encourage the exploration of
important states to beat the opponent. We evaluated our pro-
posed method in 6× 6 and 8× 8 Othello environments and
showed that the agents learned efficiently in the early stages
of the learning iterations. We discovered that we need to de-
crease the degree of the failure ratio at each iteration so that
it only has an effect on the early phase of training. It should
also be noted that our method is more useful for complicated
target tasks. It can be used in various domains with a self-
play process in the learning architecture. As future work, we
plan to incorporate a prioritized experience replay method
in our method to make stronger agents. We also plan to test
our method in various domains, especially for tasks that are
more difficult than Othello game.

References
Bjarnason, R.; Fern, A.; and Tadepalli, P. 2009. Lower bounding
klondike solitaire with monte-carlo planning. In ICAPS.
Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.; and et al.
2012. A survey of monte carlo tree search methods. T-CIAIG.
Kimura, D.; Chaudhury, S.; Tachibana, R.; and Dasgupta, S. 2018.
Internal model from observations for reward shaping. In ICML
workshop.
Kimura, D. 2018. Daqn: Deep auto-encoder and q-network.
arXiv:1806.00630.
Kocsis, L., and Szepesvári, C. 2006. Bandit based monte-carlo
planning. In ECML.
Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa,
Y.; Silver, D.; and Wierstra, D. 2015. Continuous control with deep
reinforcement learning.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; and et al. 2015. Human-
level control through deep reinforcement learning. Nature.
Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; and et al. 2016.
Asynchronous methods for deep reinforcement learning. ICML.
Osaki, Y.; Shibahara, K.; Tajima, Y.; and Kotani, Y. 2008. An
othello evaluation function based on temporal difference learning
using probability of winning. In IEEE Symposium On Computa-
tional Intelligence and Games.
Pathak, D.; Agrawal, P.; Efros, A. A.; and Darrell, T. 2017.
Curiosity-driven exploration by self-supervised prediction. In
ICML.
Rummery, G. A., and Niranjan, M. 1994. On-line Q-learning using
connectionist systems. University of Cambridge.
Schaul, T.; Quan, J.; Antonoglou, I.; and Silver, D. 2015. Priori-
tized experience replay.
Silver, D.; Hubert, T.; Schrittwieser, J.; and et al. 2017. Mastering
chess and shogi by self-play with a general reinforcement learning
algorithm. In arxiv:1712.01815.
Silver, D.; Huang, A.; and et al. 2016. Mastering the game of go
with deep neural networks and tree search. Nature 529:484–503.
Wu, Y., and Tian, Y. 2017. Training agent for first-person shooter
game with actor-critic curriculum learning. In ICLR.
Yoon, S.; Fern, A.; Givan, R.; and Kambhampati, S. 2008. Proba-
bilistic planning via determinization in hindsight. In National Con-
ference on Artificial Intelligence.

