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Abstract
This paper introduces an information-theoretic constraint on
learned policy complexity in the Multi-Agent Deep Deter-
ministic Policy Gradient (MADDPG) reinforcement learning
algorithm. Previous research with a related approach in con-
tinuous control experiments suggests that this method favors
learning policies that are more robust to changing environ-
ment dynamics (Malloy et al. 2020). The multi-agent game
setting naturally requires this type of robustness, as other
agents’ policies change throughout learning, introducing a
nonstationary environment. For this reason, recent methods
in continual learning are compared to our approach, termed
Capacity-Limited MADDPG. Results from experimentation
in multi-agent cooperative and competitive tasks demonstrate
that the capacity-limited approach is a good candidate for im-
proving learning performance in these environments.

Introduction
In the current paper we explore a capacity limited1 approach
that explicitly constrains the amount of information used to
represent an RL policy (Leibfried and Grau-Moya 2020) by
effectively constraining the difference between the agent’s
policy and marginal action distribution. Previous research
using this approach demonstrated improved generalization
in continuous control environments (Malloy et al. 2020).

Multi-agent games introduce a fundamental nonstationar-
ity to the environment, due to changes in other agents’ be-
haviour over the course of learning. This nonstationarity is
similar to the domain of continual learning, in which en-
vironment dynamics may change over time, introducing a
challenge of learning new skills and maintaining old ones,
referred to as the stability-plasticity trade-off. One previous
approach to dealing with this challenge is known as policy
consolidation (Kaplanis, Shanahan, and Clopath 2019); this
is a method of improving continual learning by constraining
the difference as measured by KL-divergence between the
current policy and previous policies.

The policy consolidation and capacity-limited methods
share the approach of constraining the difference between
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1This objective is also referred to as the mutual-information
regularized learning objective in (Leibfried and Grau-Moya 2020).

the current policy and some baseline. However, neither has
previously been applied to the domain of multi-agent games.
This work seeks to understand to connection between con-
solidation and generalization of learned behaviour in envi-
ronments with changing dynamics. Specifically, we investi-
gate the impact of applying a policy information constraint
onto the domain of mixed cooperative-competitive games
with n >= 2 agents. This is done by altering the traditional
reinforcement learning objective to include a regularization
based on the amount of information being used to represent
and agent’s policy.

Background
Multi-Agent Reinforcement Learning
The Multi-Agent Reinforcement Learning (MARL) setting
comes in co-operative, competitive, and mixed coopera-
tive/competitive game variations. In the experimentation
portion of this paper, the novel capacity-limited version of
MADDPG will be compared with the standard method in
each of these types of environments. MARL methods can be
distinguished as either training independent learners, which
do not model other agent’s policies, and joint action learn-
ers, which do attempt to model these policies (Claus and
Boutilier 1998). The MADDPG method, and by extension
the capacity-limited version, does attempt to represent the
policy of other agents in the learning environment.

An important aspect of the MARL setting is the require-
ment of agents to respond to changing behaviour of other
agents within the environment. This is particularly true of
games with some aspect of competitiveness as failure to ap-
propriately adapt to the changing policies of opponents can
result in opponents learning to take advantage of a too stable
policy. This failure of plasticity can also impact the speed of
learning in strictly cooperative games, as failing to appropri-
ately account for the changing behaviour of compatriots can
slow learning.

Continual Reinforcement Learning
The challenge of continual learning is represented by
an agent that must continually improve their behaviour
throughout their lifetime while acting in an environment



with changing dynamics (Parisi et al. 2019). These chang-
ing environment dynamics introduce competing objectives
for the agent, optimizing on current environment dynamics
at each time step and optimizing performance in previous
states of the environment. Failure to properly balance this
trade-off leads to catastrophic forgetting in which agents
learn only to optimize performance in relation to recently ex-
perienced environment dynamics, and would perform poorly
if reintroduced to previously experienced environment dy-
namics.

Continual RL can be related to the MARL setting by not-
ing that other agents introduce changing environment dy-
namics through the updating of their learned behaviour. Un-
der this conceptualization, catastrophic forgetting represents
a failure to act appropriately in relation to previously ob-
served behaviour of other agents. This failure can be in rela-
tion to the behaviour of either opponents or compatriots, as
both types of agents potentially impact learning environment
dynamics.

Capacity-Limited Method
The capacity-limited learning objective imposes a limitation
on the amount of information that is used to represent an
agent’s policy, as defined by the mutual information of the
policy I(π(a|s) according to the objective:

maxπ0:T
E(st,at)∼ρπ

[ T∑
t=0

r(st, at)

]
s.t E(st,at)∼ρπ [I(π(a|s)) ≤ C] ∀t

(1)

where I(π(a|s)) is the mutual information of the policy
function when taken to be the information channel mapping
states onto actions. The precise method for approximating
this quantity will be discussed in the section on capacity-
limited MADDPG. This allows us to define C, the desired
maximum channel capacity, and optimize performance in
the environment in relation to this capacity. In practice, this
is done by applying a weighted regularizer term to the rein-
forcement learning objective based on the mutual infomra-
tion of the agent’s policy. This optimization can be used to
define a learning objective that better reflects the reality of
information constraints on physical agents, and as we will
see, has theoretic connections to the method of policy con-
solidation when applied to continual learning environments.

Capacity-Limited Learning Objective
The connection of the policy information capacity with con-
solidation and generalization will be motivated more thor-
oughly in later sections, but the intuitive justification is that
policies that are simpler in an information-theoretic sense
discourage the over-fitting of earlier experience in environ-
ments with changing dynamics. In practice, the way we im-
pose a limit on the amount of information that the agent uses
to represent its policy is done by applying a penalty to the re-
ward based on this value. This allows us to define a learning
objective that regularizes the observed reward:

J(π) =

T∑
t=0

E(st, at) ∼ pπ[r(st, at)− βI(π(·|st)]

J(π) =

T∑
t=0

E[r − βI(π(A|S)]

The key difference with the standard RL objective is the
added penalty to the reward observed based on the amount
of information that would be required to represent the pol-
icy. Policies with higher mutual information values have a
greater complexity, in an information-theoretic sense, and
this weighted value is used to discourage policies that would
require a high information capacity channel. Thus, this
learning objective will directly encourage the development
of policies that are simple (use low information to repre-
sent) but have high utility. Additionally, if there are multiple
policies that achieve the same performance, this objective
will naturally favor the simplest among them. Higher values
of β skew the learning objective to prefer policies with less
required information.

The limitation that is imposed on the information capacity
of the agent’s policy is introduced by this learning objective.
Because this learning objective is used to update the agent’s
policy throughout training, the information capacity of the
learned policy will be dependent on the value of β. In the
extreme, very high values of β will train an agent to pre-
fer a policy that requires as little information to represent
as possible over any improvement in the reward. Because
of the nature of information capacities, this policy could be
either uniform in all states of the environment and perform
actions randomly everywhere, or deterministic in all states
or perform the same action everywhere. Conversely, setting
the value of β to zero results in the traditional learning ob-
jective of maximizing the reward with no limitation on the
amount of information utilized by the policy.

Related Work
Relation to MADDPG
The MADDPG method (Lowe et al. 2017) serves as the
baseline for performance in multi-agent mixed cooperative-
competitive games that will be built upon using the capacity-
limited approach. As mentioned, one of the motivating fac-
tors for applying capacity-limits onto the multi-agent do-
main is the potential benefit for nonstationary problems that
it can afford. However, the MADDPG method does have as-
pects that seek to address this issue.

Firstly, MADDPG employs a policy ensemble method
that randomly selects a policy from a list of potential policies
to use to define the action of an agent at any time-step. This
is done to prevent the over-fitting of learned behaviour onto
the actions of another agent in the environment, which will
likely change over time. Additionally, this issue of nonsta-
tionarity introduced by other agent’s learning altering their
behaviour is partially mitigated in the MADDPG model by
utilizing a mix of centralized and decentralized learning. The
decentralized nature of this learning ensures that at execu-
tion time actions can be performed without information from
other agents, but improves learning speed by sharing a cen-
tralized action-value function Qµi which is updated as:

L(θi) = Ex,a,r,x′ [(Qµi (x, a1, ..., aN )− y)2],

y = ri + γQµ
′

i (x′, a′1, ..., a
′
N )|a′j=µ)j(a)j),

(2)



Relation to Policy Consolidation RL
The policy consolidation method attempts to improve per-
formance in nonstationary learning environments by keep-
ing a history of recent policies and incorporating them into
the learning objective of the agent. This is done to prevent
the forgetting of useful behaviour that was beneficial to the
agent in previous time steps of the environment. This results
in the following learning objective:

L∗(π) = L(π1) + Est∼ρ1
[N−1∑
k=1

gk,k+1DKL(πk||πk+1)
]

This can be connected to the capacity-limited method by
noting that it is based on a similar goal of minimizing the
loss of the agent’s policy, which an additional constraint or
regularization that alters this learning objective:

Goal: Minimize E[L(π(a|s))]
subject to I(π(a|s)) ≤ C (3)

This capacity is achieved in the capacity-limited learning
objective by setting the coefficient β to weight the mutual
information regularization I(π(a|s)) such that it applies the
policy information capacity C. One interpretation of this reg-
ularization term is the KL-Divergence between their policy
and the product of the state and action marginals:

I(π(a|s)) = DKL(π(a|s)||pπ(a|s)(a)⊗ pπ(a|s)(s)) (4)

In this way, the capacity-limited learning objective can be
seen as similar to that of the policy consolidation method. In-
stead of using multiple previous polices as a baseline to limit
deviation from, the capacity-limited method approximates
the marginal action distribution and penalizes behaviour that
varies too much from this approximation. A key aspect of
both models is that the regularization term is a weighted
penalty on the reward that the agent observes, meaning that
there is control over how much deviation from the baseline
is allowed. As this weight term goes to zero, both models
allow for unlimited deviation from the baseline, and as it in-
creases the deviation is limited.

The difference between the two methods is that instead
of using previous policies πkold(a|s) as is done in the policy
consolidation method, the capacity-limited approach uses an
approximation of the marginal action distribution π(a). Ad-
ditional differences between the two methods exist in that
the capacity-limited method only uses a single marginal, as
opposed to a series of previous policies as is done in the pol-
icy consolidation method. Together these differences sepa-
rate the two methods, but their similarities do provide justi-
fication for investigating the impact of the capacity-limited
method in learning environments that have changing dynam-
ics.

Capacity-Limited MADDPG
The introduction of the capacity-limited learning objective is
done by simply modifying the MADDPG centralized action-
value function in Equation 2 as follows:

y = (ri − βI(π(a|s))+

γQµ
′

i (x′, a′1, ..., a
′
N )|a′j=µ)j(a)j),

(5)

The β parameter balances the impact that the reward has
on the learning objective with the penalty on the amount of
information that is being used to represent the agent’s pol-
icy. Because this parameter is dependent on the scale of the
reward, it needs to be fit to each individual learning envi-
ronment. In the section on multi-agent environments, results
from experimentation are tested using a range of beta pa-
rameters, and results are shown with different parameters
demonstrating the impact on performance that changing this
parameter has. Apart from this alteration of the learning
objective, the main difference in performance comes from
the method of approximating the mutual information of the
agent’s policy as is detailed in the following section.

Before detailing the method of approximating the mutual
information of the agent’s policy, it is important to under-
stand how to conceptualize this quantity in relation to an
agent that acts deterministically. The issue introduced by de-
terministic policies for calculating the mutual information is
that this quantity will always be 0, as the action the agent
performs is completely determined by the state they are in.
Although the MADDPG algorithm uses a deterministic pol-
icy during each episode of training, this policy is randomly
drawn from a ensemble of K different policies at the begin-
ning of each episode (Lowe et al. 2017).

The result of this is that, taken independently of the ran-
dom drawing of policies that takes place at the beginning of
each episode, there is a degree of randomness in relation to
the state that the agent is in and the action they perform. Ad-
ditionally, as we will see in the next section on approximat-
ing policy information, the method of approximation results
in a comparison of the entropy of average behaviour across
many episodes of the environment, and the current batch of
states and actions that is being used to train the agent at each
iteration of policy update.

Policy Information Approximation
The goal of the policy information approximation method
is to calculate the mutual information of the agents policy as
closely as possible. This mutual information term can be cal-
culated using the definition of mutual information in terms
of its constituent entropies

I(π(a|s)) = H(π(a))−H(π(a|s)) (6)

As mentioned, the method of approximating the mutual
information of the policy is unique to the CL-MADDPG
method, as the underlying method it is based on is different
from the two previous examples in (Malloy et al. 2020) and
(Leibfried and Grau-Moya 2020), which are based on the
Soft-Actor Critic (SAC) method (Haarnoja et al. 2018). The
reason that MADDPG requires a unique approximation is
that the actions taken by the agent are deterministic, whereas
actions in the SAC method are defined by a mean and vari-
ance.

This definition of actions allowed the capacity-limited
version (Malloy et al. 2020) of SAC to directly calculate the
entropy of the agent’s policy at any specific state, and ap-
proximate the marginal action distribution using a diagonal
multi-variate Gaussian. This allows us to define the marginal



Figure 1: Multi-Agent environments used as a test bed for the capactity-limited version of MADDPG. LEFT: Cooperative
Navigation task, 3 good agents (light blue) spread to each of the 3 targets (dark grey). Only covering 1 or 2 targets will not
maximize the reward. LEFT-CENTER: Cooperative Communication task, the speaker (Grey) communicates with the listener
(light green) which of the three locations (green, red, or blue) is the target for this episode. The listener must move to the target
location indicated by the speaker and learn which location corresponds to the information being communicated by the speaker.
RIGHT-CENTER: Competitive Keep Away environment in which the adversary (light red) must push the good agent (light
green) away from the target location. The adversary does not know at the beginning of an episode where the target location for
the good agent is (green or blue) and must infer it from their behaviour, if the good agent reaches the target location before
the adversary it will be able to remain there. RIGHT: Mixed cooperative and competitive task where 2 good agents (light blue)
move towards the target location (green) and prevent the adversary (light red) from moving there. This can be done by tricking
the adversary to move towards the dummy target (black) as the adversary cannot see which of the locations is the target.

action distribution similarly as N (µρ, σ
2
ρ) and calculate the

mean and variance as:

µρ =
∑
s

p(s)µs

σ2
ρ =

∑
s

p(s)σ2
s +

∑
s

p(s)
(
µs
)2 − (∑

s

p(s)µs

)2
Where µs is a vector representing the mean of the policy at
state s and σ2

s is the variance. As the SAC policy is stochas-
tic, at each step n through the environment the policy out-
puts a mean µn and variance σ2

n defining the action that will
be performed in that state. This gives us the online updating
method for the estimate of the marginal action distribution
variance σ̂2

n and mean µ̂n with the learning rate α.

µ̂n = αµn + (1− α)µ̂n−1
σ̂2
n = ασ2

n + (1− α)σ̂2
n−1 +

(
αµ2

n + (1− α)(µ̂n−1)2
)

−
(
αµn + (1− α)µ̂n−1

)2
However, this method cannot be used in the MADDPG
method because of the deterministic nature of the actions
selected by the agents. Instead, the values µs and σ2

s are es-
timated at each time step based on the mean and variance of
the previous 100 actions the agent has performed. After cal-
culating these values, the estimate of the marginal action dis-
tribution as a diagonal multi-variate Gaussian is done in the
same way as earlier giving the approximations at time n as
µn and σ2

µ. After approximating these values, the marginal
action probability of an action a is calculated in relation to a
diagonal multi-variate Gaussian based on these approxima-

tions as follows:

H(π(a)) = −
∑
a∈D
N (µ̂n, σ

2
µ)(a) log

(
N (µ̂n, σ

2
µ)(a)

)
Where D is the current batch of environment actions that is
being used to train the model. Another issue introduced by
the MADDPG model using deterministic actions is that the
entropy of the agent’s policy cannot be done in the same way
as the earlier method. Instead this term is estimated based on
calculating the mean µD and variance σ2

D of the batch and
representing the agent’s policy entropy as follows:

H(π(a|s)) = −
∑
a∈D
N (µD, σ

2
D)(a) log

(
N (µD, σ

2
D)(a)

)
Ultimately, this means that the approximation of the mutual
information is based on the difference in entropy between
the current batch of actions that is being used to train the
model, and the marginal approximation of the likelihood of
those actions being performed independent of the state of
the environment.

Mutli-Agent Environments
Four of the multi-agent environments from the original
MADDPG paper (Lowe et al. 2017) are used to compare
learning performance of the capacity-limited version against
the original. These environments consist of a continuous
state and action space with a discrete time representation.
Players in these environments act within a 2D grid and move
throughout the environment seeking landmarks that are as-
sociated with reward.



Cooperative Environments
The first cooperative environment used to compare the tradi-
tional and capacity-limited versions of MADDPG is the Co-
operative Communication task in which one stationary agent
chooses an action that acts as a signal to the other agent
which of the 3 potential locations that agent should move
towards to maximize their reward. The mobile agent can see
when they are near one of the three possible locations, but
do not know the color, and must infer which location they
should head towards based on the communication from the
other agent.

Results from experimentation in the Cooperative Com-
munication task shown in Figure 3 demonstrate that the
capacity-limited method with a β coefficient of 1e-2
achieves better performance at the end of training compared
to the traditional MADDPG method. The larger difference
in performance is observed in the agent with a β coefficient
of 1e-3, which allows for more consistently high reward.

Figure 2: MADDPG and CL-MADDPG (labelled as CL-
MA) training results in the cooperative communication en-
vironment. Green line shows a CL-MA agent with a β co-
efficient of 1e-3. Orange line shows the same scenario with
a coefficient of 1e-2. Blue line shows the traditional MAD-
DPG agent. Averages are shown over 5 seeds, with a rolling
average window of 5 episodes used to smooth the curve. Er-
ror bars represent 99% confidence interval.

While the performance variance for the 1e-2 β and tra-
ditional DDPG agent are fairly large, the 1e-3 β has more
consistent performance (lower variance across agent seeds).
This consistency of learned behaviour matches with the jus-
tification for the capacity-limited approach, which attempts
to encourage the similarity of new behaviour to the marginal
action distribution when it is associated with an increase in
reward.

An additional cooperative environment was used to com-
pare performance between the capacity-limited and standard
approach in a learning environment with more than 2 agents.
In these types of environments, the nonstationarity intro-
duced for each agent by 2 different updating policies can
lead to difficulties in the stability of learning. However, as
these results show, the capacity-limited agent with a β pa-
rameter of 1e-3 is able to learn quickly and with a low de-
gree of sparseness in observed performance across different
training seeds.

Figure 3: MADDPG and CL-MADDPG (labelled as CL-
MA) training results in the Cooperative Communication en-
vironment. Green line shows a CL-MA agent with a β co-
efficient of 1e-3. Orange line shows the same scenario with
a coefficient of 1e-2. Blue line shows the traditional MAD-
DPG agent. Averages are shown over 5 seeds, with a rolling
average window of 5 episodes used to smooth the curve. Er-
ror bars represent 99% confidence interval.

Competitive Environment

Figure 4: Good MADDPG vs Adversarial CL-MADDPG
and vice versa training results in the competitive Push en-
vironment. All results report the reward of the ‘good’ agent.
Blue represents a good CL-MADDPG agent with β coeffi-
cient of 1e-2 against a traditional MADDPG agent. Orange
represents the same scenario with a 1e-3 coefficient. Red
represents a good MADDPG agent against a CL-MADDPG
agent with a β coefficient of 1e-3. Green represents the same
scenario with a coefficient of 1e-2. Averages are shown over
5 seeds, with a rolling average window of 5 episodes used
to smooth the curve. Error bars represent 99% confidence
interval.

Results from this 1 on 1 competitive environment demon-
strate that the capacity-limited version of DDPG when act-
ing as the good agent achieves high reward that remains
consistently high throughout training. Meanwhile, when
the DDPG agent is matched against an adversary with a
capacity-limit on policy information there is a slight de-
crease in performance in the case of the 1e-3 β coefficient
agent, and a larger decrease observed when matched against
the 1e-2 β coefficient.



Mixed Cooperative and Competitive

Figure 5: Good MADDPG vs Adversarial CL-MADDPG
and vice versa training results in the physical deception en-
vironment. All results report the reward of the ‘good’ agent,
for MADDPG agents the beta coefficient of the adversary
is listed next to the model name in the legend. Colors are
represented in the same manner as in Figure 3. Averages
are shown over 5 seeds, with a rolling average window of
5 episodes used to smooth the curve. Error bars represent
99% confidence interval.

Graphing the average reward of the good agent in the mixed
cooperative and competitive task demonstrates the large
amount of nonstationary as the average reward increases
and decreases several times throughout training. Here, the
capacity-limited version of the DDPG agent with a β coef-
ficient of 1e-3 when matched up against a traditional DDPG
agent achieves roughly the same performance as the DDPG
agent when matched against either the β 1e-3 or β 1e-4
capacity-limited agents. The only large deviation of average
reward observed in the good agent in this environment oc-
curs when the beta coefficient is large enough to negatively
impact performance when β is 1e-3.

This difference in the effect of information capacity lim-
its demonstrates one aspect of this method, in which differ-
ent environments that have a fairly similar setup can require
different amounts of information to represent agents be-
haviour. Although each of the strictly cooperative or compet-
itive environments showed improved performance through
the capacity-limited method, this was not observed in the
mixed cooperative and competitive environment. This may
be due to the specific dynamics of the physical deception
task, or potentially due to the general learning structure of
mixed cooperative and competitive tasks.

Conclusions
In this paper we present a modification of the existing
Multi Agent Deep Deterministic Policy Gradient (MAD-
DPG) method by altering the learning objective with a reg-
ularization term that limits policy information. The mo-
tivation for investigating the impact of this policy in-
formation minimization is in improving generalization as
well as connections to consolidation of learned behaviour
in nonstationary environments. Results from experimen-
tation within these multi-agent cooperative, competitive,

and mixed cooperative-competitive tasks indicate that the
capacity-limited approach is a good candidate for improv-
ing generalization and consolidation of learning in nonsta-
tionary environments.

Several areas of future research exist within the under-
standing of how attempts of generalization impact the con-
solidation of learned behaviour in nonstationary environ-
ments. Although the capacity-limited method showed im-
provements in learning for most of these tasks, the physical
deception task did not show a significant different. It is un-
clear precisely what dynamics of this learning task makes
the capacity-limited approach less successful. Other envi-
ronments tested included ones with more than 2 agents, and
environments that had cooperative or competitive dynamics.
This was the only environment tested that had a mix of co-
operative and competitive aspects within the same learning
environment. Future research in applying capacity-limits to
mixed cooperative and competitive tasks to determine if this
effect is common across these types of environments.
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