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Abstract

Using competitive multi-agent reinforcement learn-
ing (MARL) methods to solve physically grounded
problems, such as robust control and interactive manip-
ulation tasks, has become more popular in the robotics
community. However, the asymmetric nature of these tasks
makes the generation of sophisticated policies challenging.
Indeed, the asymmetry in the environment may implicitly
or explicitly provide an advantage to a subset of agents
which could, in turn, lead to a low quality equilibrium.
This paper proposes a novel game-theoretic MARL algo-
rithm, Stackelberg Multi-Agent Deep Deterministic Policy
Gradient (ST-MADDPG), which formulates a two-player
MARL problem as a Stackelberg game with one player as
the ‘leader’ and the other as the ‘follower’ in a hierarchical
interaction structure wherein the leader has an information
advantage: the leader in ST-MADDPG updates using its
total policy gradient, meaning it differentiates through the
local best response of the follower. In a simple competitive
robotics environment, we show that the leader learns a
better policy by exploiting this information advantage and
is able to either dominate the game or alleviate the native
disadvantage from the game environment. In two practical
robotic problems, ST-MADDPG allows the leader to learn
more sophisticated and complex strategies that work well
even against an unseen strong opponent.

1 Introduction
Multi-agent Reinforcement Learning (MARL) addresses
the sequential decision-making problem of multiple au-
tonomous agents that interact with each other in a common
environment, each of which aims to optimize its own long-
term return (Zhang, Yang, and Başar 2019). Purely compet-
itive settings form an important class of sub-problems in
MARL, and are typically formulated as a zero-sum two-
player game using the framework of competitive Markov
decision processes (Filar and Vrieze 2012). There has been
much success in using competitive MARL methods to solve
such problems, especially for symmetric games including
extensive form games on finite action spaces such as chess
and video games (Silver et al. 2017; Berner et al. 2019;
Vinyals et al. 2019). These algorithms typically use a co-
evolution training scheme in which the competing agents
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continually create new tasks for each other and incremen-
tally improve their own policies by solving these new tasks.
However, once one or more evolved agents fails to suffi-
ciently challenge their opponent, subsequent training is un-
likely to result in further progress due to a lack of pressure
for adaptation. This cessation of the co-evolution process in-
dicates that the agents have reached an equilibrium.

Recently, competitive MARL methods have gained at-
tention from the robotics community and have been used
to solve physically grounded problems, such as adversarial
learning for robust control, autonomous task generation, and
complex robot behavior learning (Dennis et al. 2020; Baker
et al. 2019; Yang et al. 2021b,a). However, these problems
are typically asymmetric in practice. Unlike a symmetric
game where all agents have the same knowledge and the
same ability to act, an asymmetric game requires the agents
to solve their own task while coupled in an imbalanced com-
petitive environment. One agent could gain advantage from
having an easier initial task, and learn to exploit the advan-
tage to quickly dominate the game (Pinto et al. 2017). This
will prematurely terminate the co-evolving process and all
agents are trapped in a low quality equilibrium. For exam-
ple, in a simulated boxing game, if a player is able to punch
significantly harder than the other, it can easily execute a
knockout. Such a player could learn to knock out the oppo-
nent at the very beginning of a match, leaving no chance for
the opponent to explore for better counter strategies such as
strategic footwork to avoid the knockout blow.

To overcome this challenge, one common approach is
to generate a large amount of diversified samples using
population-based methods and distributed sampling (Bansal
et al. 2017; Baker et al. 2019). Yet, this approach is re-
source consuming. For complex problems, such as control-
ling agents that have bodies with a high degree of free-
dom, this approach usually requires sampling data on mul-
tiple high performance computers for days. With a suffi-
cient amount of engineering effort, some policy initializa-
tion methods such as reward shaping and imitation learning
could be used to initialize the system to a desired state (Won,
Gopinath, and Hodgins 2021; Yang et al. 2021a). The mini-
max regret strategy is a risk-neutral decision-maker that has
been demonstrated to prevent the stronger player from dom-
inating the game in adversarial learning (Dennis et al. 2020).
Yet, the proposed best response update suffers from instabil-



ity. More importantly, by simply treating two players equally
with a symmetric information structure and simultaneous
learning dynamics, these methods fail to capture the inher-
ent imbalanced underlying structure of the environment. In
addition, as presented in (Foerster et al. 2018; Prajapat et al.
2020; Zheng et al. 2022), MARL methods that use simulta-
neous gradient descent ascent updates could result in poor
convergence properties in practice.

In this paper, we aim to solve this problem by directly
modifying the game dynamics to aid in re-balancing the bias
in asymmetric environments. We leverage the Stackelberg
game structure (Von Stackelberg 2010) to introduce a hierar-
chical order of play, and therefore an asymmetric interaction
structure, into competitive games.

In a two-player Stackelberg game, the leader knows that
the follower will react to its announced strategy. As a result
of this structure, the leader optimizes its objective account-
ing for the anticipated response of the follower, while the
follower selects a myopic best response to the leader’s action
to optimize its own objective. As a result, the leader stands
to benefit from the Stackelberg game structure be achiev-
ing a better equilibrium payoff compared to that in a normal
competitive game (Başar and Olsder 1998). This is a desir-
able property when one agent is the primary agent in the task
(e.g., robust control with adversaries) or when one agent has
initial or inherent disadvantage due to the asymmetric game
environment and a re-balance of power is sought, as we will
demonstrate in our experiments. The main contributions of
this paper are listed below:

A Novel MARL Algorithm: ST-MADDPG. We formu-
late the competitive MARL problem as a Stackelberg game.
By adopting the total derivative Stackelberg learning update
rule, we extend the current state-of-the-art MARL algorithm
MADDPG (Lowe et al. 2017) to a novel Stackelberg ver-
sion, termed Stackelberg MADDPG (ST-MADDPG).

Multi-agent Co-evolution in Asymmetric Environment.
From a novel perspective, we study how information and
force exertion asymmetries affect the agents’ performance
and behaviors during the multi-agent co-evolution pro-
cess. We first design a simple competitive RL benchmark
with continuous control space: competitive-cartpoles (Fig-
ure 1.1). In this environment, we demonstrate that the use of
the Stackelberg gradient updates provide an information ad-
vantage to the leader agent that compensates for the agent’s
initial or inherent disadvantage and leads to better perfor-
mance.

Application to Practical Robotics Tasks. The practical
effectiveness of the proposed algorithm is demonstrated in
two tasks. In a robust control problem (Figure 1.2), having
an information advantage during adversarial training allows
the resulting robot to better survive adversarial and intense
random disturbances. In a multi-agent competitive fencing
game (Figure 1.3), ST-MADDPG allows the robot to learn
complex strategies for better performance. Notably, one of
the agents learned a strategy that is similar to the best per-
forming human strategy recorded in a previous user study.

2 Preliminaries
In this section, we provide the requisite preliminary mathe-
matical model and notation.

Competitive Markov Game. We consider a two-player
zero-sum fully observable competitive Markov game (i.e.,
competitive MDP). A competitive Markov game is a tuple
of (S,A1,A2, P, r), where S is the state space, s ∈ S is
a state, player i ∈ {1, 2}, Ai is the player i’s action space
with ai ∈ Ai. P : S × A1 × A2 → S is the transition
kernel such that P (s′|s, a1, a2) is the probability of transi-
tioning to state s′ given that the previous state was s and
the agents took action (a1, a2) simultaneously in s. Reward
r : S ×A1 ×A2 → [0, 1] is the reward function of player 1
and by the zero-sum nature of the competitive setting, player
2 receives the negation of r as its own reward feedback. Each
agent uses a stochastic policy πiθ, parameterized by θi.
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where τ ∼ π is shorthand to indicate that the distribution
over trajectories depends on π : s0 ∼ ρ, a1

t ∼ π1(·|st), a2
t ∼

π2(·|st), st+1 ∼ P (·|st, a1
t , a

2
t ).

The game objective is the expected return and is given by

J(π) = Eτ∼π
[∑T

t=0 γ
tr(st, a

1
t , a

2
t )
]

= Es∼ρ,a1∼π1(·|s),a2∼π2(·|s)
[
Qπ(s, a1, a2)

]
.

In a competitive Markov game, player 1 aims to find a pol-
icy maximizing the game objective, while player 2 aims to
minimize it. That is, they solve for maxθ1 J(π1, π2) and
minθ2 J(π1, π2), respectively.

Stackelberg Game Preliminaries. A Stackelberg game
is a game between two agents where one agent is deemed
the leader and the other the follower. Each agent has an
objective they want to optimize that depends on not only
their own actions but also the actions of the other agent.
Specifically, the leader optimizes its objective under the as-
sumption that the follower will play a best response. Let
J1(θ1, θ2) and J2(θ1, θ2) be the objective functions that the
leader and follower want to minimize (in a competitive set-
ting J2 = −J1), respectively, where θ1 ∈ Θ1 ⊆ Rd1 and
θ2 ∈ Θ2 ⊆ Rd2 are their decision variables or strategies and
θ = (θ1, θ2) ∈ Θ1 × Θ2 is their joint strategy. The leader
and follower aim to solve the following problems:

minθ1∈Θ1
{J1(θ1, θ2)

∣∣ θ2 ∈ arg minφ∈Θ2
J2(θ1, φ)},

(L)
minθ2∈Θ2 J2(θ1, θ2). (F)

Since the leader assumes the follower chooses a best re-
sponse θ∗2(θ1) = arg minφ J2(θ1, φ), the follower’s deci-
sion variables are implicitly a function of the leader’s. In



Figure 1: This work focuses on three competitive robotics tasks with physical interaction. 1. Competitive-cartpoles is a sim-
ple one-dimensional continuous control environment. 2. Hopper with adversarial disturbances is a classic robust control
problem. 3. The fencing game is a competitive-HRI benchmark.

deriving sufficient conditions for the optimization problem
in (L), the leader utilizes this information in computing the
total derivative of its cost:
∇J1(θ1, θ

∗
2(θ1)) = ∇1J1(θ) + (∇θ∗2(θ1))>∇2J1(θ),

where∇θ∗2(θ1) = −(∇2
2J2(θ))−1∇21J2(θ)1 by the implicit

function theorem (Krantz and Parks 2002).
A point θ = (θ1, θ2) is a local solution to (L) if

∇J1(θ1, θ
∗
2(θ1)) = 0 and ∇2J1(θ1, θ

∗
2(θ1)) > 0. For the

follower’s problem, sufficient conditions for optimality are
∇2J2(θ1, θ2) = 0 and ∇2

2J2(θ1, θ2) > 0. This gives rise to
the following equilibrium concept which characterizes suf-
ficient conditions for a local Stackelberg equilibrium.
Definition 1 (Differential Stackelberg Equilibrium, Fiez,
Chasnov, and Ratliff 2020). The joint strategy profile θ∗
= (θ∗1 , θ

∗
2) ∈ Θ1 × Θ2 is a differential Stackelberg equi-

librium if ∇J1(θ∗) = 0, ∇2J2(θ∗) = 0, ∇2J1(θ∗) > 0,
and ∇2

2J2(θ∗) > 0.
The Stackelberg learning dynamics derive from the first-

order gradient-based sufficient conditions and are given by
θ1,k+1 = θ1,k − α1∇J1(θ1,k, θ2,k), and θ2,k+1 = θ2,k −
α2∇2J2(θ1,k, θ2,k), where αi, i = 1, 2 are the leader and
follower learning rates.

MADDPG. (Lowe et al. 2017) showed that naïve policy
gradient methods perform poorly in simple multi-agent
continuous control tasks and proposed more advanced
MARL algorithm termed MADDPG, which is one of the
state-of-the-art multi-agent control algorithms. The idea of
MADDPG is to adopt the framework of centralized training
with decentralized execution. Specifically, they use a cen-
tralized critic network Qw to approximate the Qπ function,
and update the policy network πiθ of each agent using the
global critic. Consider the deterministic policy setting, each
player has policy µiθ, with parameter θi. The game objective
(for player 1) is J(θ1, θ2) = Eξ∼D

[
Qw(s, µ1

θ(s), µ
2
θ(s))

]
,

where ξ = (s, a1, a2, r, s′), D is a replay buffer. The policy
gradient of each player can be computed as∇θ1J(θ1, θ2) =
Eξ∼D

[
∇θ1µ1

θ(s)∇a1Qw(s, a1, a2)|a1=µ1
θ(s)

]
, and

∇θ2J(θ1, θ2) = Eξ∼D
[
∇θ2µ2

θ(s)∇a2Qw(s, a1, a2)|a2=µ2
θ(s)

]
.

1The partial derivative of J(θ1, θ2) with respect to the θi is
denoted by ∇iJ(θ1, θ2) and the total derivative of J(θ1, h(θ1))
for some function h, is denoted ∇J where ∇J(θ1, h(θ1) =
∇1J(θ1, h(θ1)) + (∇h(θ1))>∇2J(θ1, h(θ1)).

The critic objective is defined as the mean square
Bellman error L(w) = Eξ∼D[(Qw(s, a1, a2) − (r +
γQw′(s′, µ1

θ′(s
′), µ1

θ′(s
′)))2], where Qw′ and µ1

θ′ , µ
2
θ′ are

target networks obtained by polyak averaging the Qw and
µ1
θ, µ

2
θ network parameters over the course of training.

In MADDPG with competitive setting, the centralized
critic is updated by gradient descent and the two agent’s pol-
icy are update by simultaneous gradient descent and ascent
θ1 ← θ1 + α1∇θ1J(θ1, θ2), θ2 ← θ2 − α2∇θ2J(θ1, θ2).

3 Stackelberg MADDPG Algorithm
In this section, we introduce our novel ST-MADDPG algo-
rithm. A central feature of ST-MADDPG is that the leader
agent exploits the knowledge that the follower will respond
to its action in deriving its gradient based update. Namely,
the total derivative learning update gives the information
advantage to the leader by anticipating the follower’s up-
date during learning and leads to Stackelberg equilibrium
convergence in a wide range of applications such as gener-
ative adversarial networks and actor-critic networks (Fiez,
Chasnov, and Ratliff 2020; Zheng et al. 2022). According
to Başar and Olsder (1998, Chapter 4), in the two-player
game with unique follower best responses, the payoff of
the leader in Stackelberg equilibrium is better than Nash
equilibrium, which is desired in many applications. The full
ST-MADDPG algorithm is shown in Algorithm 1 in Ap-
pendix A.1.

Setting player 1 to be the leader, the ST-MADDPG policy
gradient update rules for both players are given by:

θ1 ← θ1 + α1∇J(θ1, θ2),

θ2 ← θ2 − α2∇θ2J(θ1, θ2),

where the total derivative in the leader’s update is given by

∇J(θ1, θ2) = ∇θ1J(θ1, θ2)−
∇θ1θ2J(θ1, θ2)(∇2

θ2J(θ1, θ2))−1∇θ2J(θ1, θ2). (1)

The second order terms of the total derivative in (1) can be
computed by applying chain rule:

∇θ1θ2J(θ1, θ2) = Eξ∼D[∇θ1µ1
θ(s)∇a1a2Qw(s, a1, a2)

(∇θ2µ2
θ(s))

T |a1=µ1
θ(s),a2=µ2

θ(s)],

∇2
θ2J(θ1, θ2) = Eξ∼D

[
∇2
θ2µ

2
θ(s)∇a2Qw(s, a1, a2)|a2=µ2

θ(s)

]
.



To obtain an estimator of the total derivative ∇J(θ1, θ2),
each part of (1) is computed by sampling from a replay
buffer. The inverse-Hessian-vector product can be efficiently
computed by conjugate gradient (Zheng et al. 2022).

Implicit Map Regularization. The total derivative in
the Stackelberg gradient dynamics requires computing
the inverse of follower Hessian ∇2

θ2J(θ1, θ2). Since pol-
icy networks in practical reinforcement learning problems
may be highly non-convex, (∇2

θ2J(θ1, θ2))−1 can be ill-
conditioned. Thus, instead of computing this term directly,
in practice we compute a regularized variant of the form
(∇2

θ2J(θ1, θ2) + λI)−1. This regularization method can be
interpreted as the leader viewing the follower as optimizing
a regularized cost J(θ1, θ2)+ λ

2 ‖θ
2‖2, while the follower ac-

tually optimizes J(θ1, θ2). The regularization λ interpolates
between the Stackelberg and individual gradient updates for
the leader.

Proposition 1. Consider a Stackelberg game where
the leader updates using the regularized total gra-
dient ∇λJ1(θ) = ∇1J1(θ) − ∇>21J2(θ)(∇2

2J2(θ) +
λI)−1∇2J1(θ). The following limiting conditions hold: 1)
∇λJ1(θ)→ ∇J1(θ) as λ→ 0; 2) ∇λJ1(θ)→ ∇1J1(θ) as
λ→∞.

4 Experiments
In this section, we report on three experiment environments
that provide insight into the following three main questions:
(Q1): How do agents with a continuous action spaces behave
under capability and information asymmetries?; (Q2) Can
a weaker agent’s inherent disadvantage be compensated by
the information advantage from ST-MADDPG? (Q3): Does
the proposed algorithm create better autonomous agents that
solve real-world robotics problems?

Note that the trend of the cumulative reward of learning
does not increase monotonically in competitive MARL en-
vironments as in well trained single-agent or cooperative
MARL environments. Hence, to evaluate an agent’s perfor-
mance, we choose to collect gameplay data by having the
trained agents play multiple games against its co-evolving
partner from training or a hand-designed reference oppo-
nent. Further execution details are described in Section 4.1
and 4.2.

Competitive-Cartpoles. In order to answer Q1 and Q2,
we proposed a two-player zero-sum competitive game in
which each agent solves a one-dimensional control task. As
shown in Figure 2, this environment contains two regular
cartpole agents. The dynamics of the two agents are coupled
by a spring, where each end of the spring connects to one of
the agent’s bodies. Both agents will get a zero reward when
they balance their own poles at the upright position simulta-
neously. If one of the agents loses its balance, this agent will
receive a reward of −1 for every subsequent time step in the
future until the game ends. The still balanced agent will get
a reward of +1 for every time step until it also loses its bal-
ance and ends the game. As a result, the goal of each agent
is to prevent its own pole from falling over, while seeking to

break the balance of the opponent by introducing disturbing
forces via the spring.

Hopper with Adversarial Disturbance. To investigate
Q3, we will first focus on creating a robust control policy
for the classic hopper environment using adversarial train-
ing (Duan et al. 2016; Pinto et al. 2017). Here, the first agent
controls the classic hopper robot with four rigid links and
three actuated joints. The second agent learns to introduce
adversarial two-dimensional forces applied to the foot of the
hopper.

The Fencing Game. To further examine Q3, we consider
an asymmetric zero-sum competitive game with complex
environment dynamics proposed by Yang et al. (2021a). This
game is a two player attack and defend game where one
player is the antagonist who aims to maximize its game
score by attacking a predefined target area with a sword,
without making contact with the opponent’s sword. The
other agent is the protagonist who aims to minimize the an-
tagonist’s score by defending the target area. The game rules
are detailed in Appendix A.4. This game is a challenging
competitive MARL problem due to the fact that its highly
asymmetric. In order to gain positive rewards, the antago-
nist has to reach out to the target area. However, being in the
target area also correlates to a huge risk of being penalized
by the protagonist. This gives the antagonist a harder task to
solve compared to the protagonist.

4.1 Learning Under Asymmetric Advantage
This section explicitly studies the performance and behav-
ior of the trained agents in the competitive-cartpoles en-
vironment under symmetric and asymmetric settings. We
first demonstrate how ST-MADDPG can provide an infor-
mation advantage to an agent and improve its performance.
We then show that given an asymmetric environment where
one agent has a force exertion advantage over the other, ST-
MADDPG can be used to retain a balance in agents’ perfor-
mance.

Information Advantage. This experiment starts with a
symmetric competitive-cartpoles environment, where both
agents have the same ability to act. To understand how
the information advantage inherent in the Stackelberg
game structure affects the system’s co-evolution process,
we ran both MADDPG and ST-MADDPG methods on
the competitive-cartpoles environment. MADDPG training
represents a symmetric evolution environment, and ST-
MADDPG training gives an information advantage to the
leader (player 1).

For each of these two methods, we created four pairs of
agents with four different random seeds. In order to compare
the agents’ performance between the two training methods,
we ran a tournament and resulted 320 game scores and tra-
jectories for each of the methods. The tournament details are
discussed in Appendix A.2. The first two columns in Fig-
ure 2 summarize the statistics for the two tournaments. Note
that the tournament game scores in this section refer to the
scores of player 1. Therefore, a game will have a positive



Figure 2: Statistical analysis of the learned policies’ performance in four different variations of the competitive-cartpoles envi-
ronment. The game scores refer to Player 1’s scores.

score if player 1 wins, a negative score if player 2 wins, and
zero if the two players are tied.

Under the symmetric setting (i.e., MADDPG), the per-
formance of player 1 and player 2 are similar. The tourna-
ment has a mean score of 49.8. While the majority of the
games were scored between−90 to 90, the rest of the games
covered almost the entire score range from −877 to 920.
This indicates that while the two players have similar per-
formance in most cases, each of them can occasionally out-
perform the other by a lot. In contrast, when given an in-
formation advantage during training (i.e., ST-MADDPG),
player 1 won more games with a larger mean score of 135.
Player 2 only got −87 on its best win, meaning that the
follower could never significantly outperform the leader.
Therefore, the leader has better overall performance com-
pared to the follower. When observing the agents’ behaviors
by replaying the collected trajectories, we found that the two
players resulting from the symmetric environment usually
compete intensively by pushing and pulling each other via
the spring. While they are able to keep their own poles up-
right, they fail to break the balance of the other agent and
win the game in most of the competitions. Meanwhile, for
the agents from ST-MADDPG, the leader manages to learn
a policy to pull the follower out of the frame to win the game.
Video demonstration of the robots’ behaviors can be found
in this link.

Re-balancing Asymmetric Environment. Given that ST-
MADDPG creates an information advantage that improves
a specific agent’s performance, we want to test if this infor-
mation advantage can be used to compensate for a disad-
vantage that is assigned to an agent by the asymmetric en-
vironment. We created an asymmetric competitive-cartpoles
environment by giving player 1 a force disadvantage, where
player 1 has a decreased maximum control effort that is only
30% as much as player 2’s maximum effort. Afterward, we
once again trained agents using both MADDPG and ST-

MADDPG (player 1 as the leader) with four random seeds
and generated evaluation data with two tournaments.

As expected, under a substantial force disadvantage,
player 1’s performance was significantly worse than player 2
after the MADDPG training. However, as shown in Figure 2,
when Stackelberg gradient updates are applied, the two play-
ers’ performances are equivalent. With a mean score of 4.57,
maximum score of 751, and a minimum score of −852, the
information advantage is able to compensate for the force
disadvantage for player 1 and generated a score distribu-
tion that is similar to the symmetric environment described
above.

4.2 Application in Practical Robotics Problems
The previous section shows that ST-MADDPG can be used
to change the learning dynamics in a multi-agent competi-
tive game, which allows the system to converge to another
equilibrium that is potentially more desirable to one or both
agents in the system. In this section, we further explore ST-
MADDPG in two practical robotics problems and evalu-
ate whether it truly improves the robots’ performance when
competing against a strong and unseen opponent.

Hopper with Adversarial Disturbance In this robust
control problem, we found that providing an information
advantage to the robot in adversarial training can further
improve the robustness of a robot control policy. The ST-
MADDPG trained hopper agents outperformed the MAD-
DPG trained hopper agents under both adversarial attacks
and random disturbances with multiple intensity levels. The
training details and experimental setups are further dis-
cussed in Appendix A.3.

Adversarial Attack. We used MADDPG and ST-
MADDPG algorithms to create four pairs of hoppers and
adversaries with four random seeds respectively. Each pair
of agents were evaluated with 50 games, resulting in 200

https://youtube.com/playlist?list=PL9YN_bKpBjfGL_JRIrPHBPRDrjD6PwffY


Figure 3: Performance comparison between four Hopper agents under three different levels of random disturbances. The error
bars denote standard deviation.

game scores for each method. We found that the ST-
MADDPG trained hoppers were able to survive significantly
longer (6002.5 avg. reward) than those from MADDPG
training (2877.3 avg. reward) under adversarial attacks.

High Intensity Random Disturbance. The generalizabil-
ity of all hopper agents was tested under three environments
with no disturbances and two different levels of strong ran-
dom disturbances respectively (e.g., 0N , 0.1N , and 10.N ).
Each agent ran 50 trials in each of the environments, and
Figure 3 compares the agents’ performance from the two
training methods. Even though the maximum strength of the
adversaries in training was bounded by 0.001N , some of
the agents (e.g., MADDPG:50%, ST-MADDPG:100%) still
managed to receive more than 1000 average rewards under
random disturbances with the maximum strength of 10N .
ST-MADDPG trained agents greatly outperformed MAD-
DPG trained agents in all three levels of intensities. There-
fore, ST-MADDPG policies are robust enough to maintain
high performance under unseen scenarios.

The Fencing Game The antagonist in this game was as-
signed to solve a harder task compared to the protagonist.
Therefore, this experiment focuses mainly on improving
the performance of the antagonist. In the following sub-
sections, we first demonstrate that the antagonist performs
sub-optimally in a normal co-evolution process, and then
show that the Stackelberg gradient updates improves the an-
tagonist’s performance when playing against its original op-
ponent from training. As the leader in ST-MADDPG train-
ing, the antagonist was able to learn more sophisticated at-
tacking strategies compared to the MADDPG trained antag-
onist. Afterward, we evaluated the antagonist agents’ practi-
cal performance against a strong heuristic-based protagonist
policy. We found that with the right amount of information
advantage, the antagonist was able to win half of the games
even when playing against a strong unseen opponent. Note
that, the game scores discussed in this section refer to the
protagonist’s scores. A positive score indicates the victory
of the protagonist and a negative score indicates the victory
of the antagonist.

Improved Performance and Emergent Complexity. In
this experiment, we trained the 1st pair of agents under the
original co-evolution environment of the game (i.e., MAD-
DPG), and trained the 2nd, 3rd and 4th pairs of agents by
having the antagonist as the leader in the Stackelberg game
setting (i.e., ST-MADDPG) with three different regulariza-

tion values (i.e. λ) 5.5e5, 1e6, and 1.5e6 respectively. We
evaluated each pair of agents with 100 games, and the re-
sults are summarized in Appendix A.4 Table 1. The 1st pair
of agents have a mean score of 90.6, indicating the protag-
onist outperformed the antagonist. The 1st antagonist was
only able to learn a trivial attacking strategy that directly
and repetitively reached out to the target area from one di-
rection. Such an attacking strategy was overly greedy, mak-
ing the antagonist fail to avoid most of the penalties. On the
other hand, the antagonists’ performance was significantly
improved by ST-MADDPG training. The 2nd, 3rd, and 4th

antagonists outperformed their original opponents with av-
erage game scores of −31.6, −97.14, and −188.5 respec-
tively. The improvement in the antagonists’ performance
was correlated to more complex behaviors and sophisticated
strategies. The 2nd and the 3rd antagonists learned highly
effective yet drastically different attacking strategies. Qual-
itative analysis of agents’ behaviors are discussed in Ap-
pendix A.4.

Playing Against A Strong and Unseen Protagonist. In
order to test if ST-MADDPG actually improves the equi-
librium’s quality, we further evaluated the four antagonists
with a carefully designed heuristic-based protagonist pol-
icy. A higher quality equilibrium should result in more ro-
bust antagonist strategy with better performance when com-
peting against an unseen opponent. By placing the protag-
onist’s sword in between the target area and the point on
the antagonist’s sword that is closest to the target area, the
heuristic-based policy exploits embedded knowledge of the
game’s rules in order to execute a strong defensive protag-
onist. The design of this heuristic-base policy is detailed in
Appendix A.4. As shown in Table 2, with a mean score of
300.3 and a wining rate of 14%, the MADDPG trained (1st)
antagonist was dominated by the heuristic-based protago-
nist. In contrast, two of the ST-MADDPG trained antago-
nists with sophisticated behaviors were able to achieve sig-
nificantly better results, where the 2nd and 3rd antagonist
won 46% and 42% of the games, respectively. Although the
4th antagonist has the best average reward out of the three
ST-MADDPG trained agents in the previous experiment, it
has the worst performance in this experiment. Therefore, to
converge to a high quality equilibrium, it is crucial to care-
fully select a regularization value and maintain a good capa-
bility balance between the agents.



5 Conclusion
This work studies the application of MARL on asymmet-
ric physically grounded competitive games. Due to the
asymmetry in these environments, the co-evolution pro-
cess of a multi-agent system could terminate prematurely
and lead to a low-quality equilibrium. We proposed the
Stackelberg-MADDPG algorithm, which formulates a two-
player MARL problem as a Stackelberg game and provides
an information advantage to one of the agents in the system.
In a simple competitive physical game, we demonstrated that
the agent’s inherent advantage biases the training process,
yet, the proposed algorithm can recreate a balance in the
co-evolution environment. In robust control and interactive
manipulation tasks, the proposed algorithm was able to cre-
ate more robust and sophisticated policies compared to the
state-of-the-art MARL algorithm MADDOG.
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A Algorithm and Experiment Details
A.1 ST-MADDPG
Algorithm 1 details the ST-MADDPG algorithm proposed
in this paper. In this work we select the implicit map regu-
larization hyperparameter λ for each environment via a grid
search. In general, the neural network may be highly non-
convex and the hessian inverse can be ill-conditioned. A
larger regularization prevents the gradient from exploding
and yields smoother learning dynamics, as observed in our
experiments as well as in other Stackelberg learning appli-
cations (Fiez, Chasnov, and Ratliff 2020; Zheng et al. 2022).
How to trade-off between Stackelberg and normal gradi-
ent learning by picking the regularization optimally or even
adaptively is a future direction.

Algorithm 1: ST-MADDPG algorithm
for episodes k = 1, 2, . . . ,K do

receive initial state s0;
for t = 1, 2, . . . , T do

for each agent i, select action ai = µiθ(s)
according to the corrent policy;

execute actions (a1, a2) and observe reward r
and new state s′;

store (s, a1, a2, r, s′) in replay buffer D;
s← s′;
sample a random minibatch of N transitions
(si, a

1
i , a

2
i , ri, s

′
i) from D;

set yi = ri +Qw′(si, µ
1
θ′(si), µ

1
θ′(si));

update the critic by minimizing the loss:

L(w) =
1

N

N∑
i=1

[
(
Qw(si, a

1
i , a

2
i )− yi

)2
]

update the leader policy using the total
gradient computed by (1):

θ1 ← θ1 + α1∇λJ(θ1, θ2)

update the follower policy using the policy
gradient:

θ2 ← θ2 − α2∇θ2J(θ1, θ2)

update the target networks:

w′ ← τw + (1− τ)w′

θi
′ ← τθi + (1− τ)θi

′

end
end

A.2 Competitive-Cartpoles
The maximum length of the competitive-cartpoles game is
1000 time-steps in both training and experiments. We ran
two tournaments to sample evaluation data, one for the
agents resulting from MADDPG and the other for those
from ST-MADDPG. In a tournament, each of the four



player 1 agents (resulted from four random seeds) played
20 games against each of the four player 2 agents, resulting
in 320 game scores and trajectories. This evaluation process
allows an agent to play games with not only its original co-
evolving opponent but also the opponents that are trained
in different random seeds, providing a more comprehensive
summary for each training setting. In this environment, the
regularization values λ in all ST-MADDPG training were set
to one.

A.3 Hopper
During training, the maximum length of the games was
bounded by 1000 time-steps for a shorter training time.
However, in the evaluation experiments, all trials have a
maximum length of 3000 time-steps to better distinguish
agents’ performance. In this environment, the regularization
values λ in all ST-MADDPG training were set to 5000.

A.4 The Fencing Game
The fencing game is a competitive benchmark for human-
robot interaction using a PR2 robot. This robot is compa-
rable to a human in terms of body size and arm flexibil-
ity (Yang et al. 2020; Yang, Lancaster, and Smith 2017).

Game Rules. Algorithm 2 summarizes the scoring mech-
anism of the fencing game. The antagonist will get one point
by placing its sword within the orange spherical(target) area
located between the two agents. But the antagonist will re-
ceive a negative ten points of score penalty if its sword is
placed within the target area and makes contact with the pro-
tagonist’s sword simultaneously. Meanwhile, the goal for the
protagonist agent on the left is to minimize the antagonist’s
score by giving him score penalties. Additionally, the antag-
onist will get 10 points of reward if the protagonist’s sword
is placed within the target area, passively waiting for the an-
tagonist to attack for more than 2 seconds. Each agent has a
seven dimension continuous control space. Each game will
last for 1000 time-steps (i.e. 10 seconds)

Algorithm 2: The Fencing Game Scoring Mecha-
nism

Initialize: Game score s = 0; Timestep = 0.01 Sec;
Game horizon = 20 Sec

bat_a→ Antagonist’s bat
bat_p→ Protagonist’s bat
target→ Target Area
for every timestep in this game do

if bat_a in target then
if bat_a contacts bat_p then

s -= 10
else

s += 1
end

if bat_p in target for more than 200 consecutive
timesteps then

s += 10
end

Heuristic-based Protagonist Policy. We aimed to design
a strong baseline heuristic policy to create an intense hu-
man robot gameplay experience. Given an observation of the
world, the robot orients its bat perpendicular to the human’s
bat with random angular offsets drawn uniformly from -25
to 25 degrees on the x, y, and z axes. In order to ensure that
the robot is always executing a competitive defense, the pol-
icy commands the robot to position the center of its bat in
between the target area and the point on the human’s bat
that is closest to the target area:

b̄p = ¯tar + ( ¯hclose − ¯tar) · uniform(0.5, 1)

¯hclose = ¯hlow + ht · ( ¯hup − ¯hlow)

ht = max
(
0,min

(
1, ( ¯tar − ¯hlow) · ( ¯hup − ¯hlow)/(2 · Lsword)

))
Where b̄p, ¯tar, ¯hup and ¯hlow represent the position of the
robot’s bat frame, the center of the target area, the upper
end of human’s bat, and the lower end of human’s bat re-
spectively. ¯hclose indicates the point on the human’s bat that
is closest to the center of the target area, and Lsword indi-
cates the length of a bat. The function uniform(0.5, 1) ran-
domly determines how far apart the robot’s bat should be
from the human’s bat. In addition, there is a 50% chance
for the robot to execute the desired bat position calculated
from the last time step instead of the latest desired pose. The
added uncertainties introduce randomness to the robot’s be-
havior. This heuristic allows the robot to dominate the fenc-
ing game when it can move faster or as fast as the antagonist.
In this experiment, the physical capability of the antagonist
and protagonist agents are identical.

Qualitative Result. Table 1 and Table 2 summarizes the
antagonists’ performance when playing against their origi-
nal opponents from training and the heuristic-based protag-
onist respectively. A positive game score indicates that the
protagonist wins the game, and a negative score indicates
the antagonist wins.

Quantitative Result – Emergent Behaviors. The im-
provement in the antagonists’ performance was correlated to
more complex behaviors and sophisticated strategies. Fig-
ure 4 visualizes the state visitation frequency of the two
players. For example, the 2nd antagonist learned to patiently
prepare the attacks further away from the target area, and
initiate the attacks when the protagonist’s arm gets to a rel-
atively less manipulable state. On the other hand, the 3rd

antagonist agent was able to aggressively position its sword
closely to the target during the whole game. By carefully
adjusting its sword’s position and orientation with respect
to the protagonist’s end-effector pose, the antagonist always
maintains a small amount of distance from the protagonist’s
sword without being penalized. This highly efficient maneu-
ver is similar to the best performing human strategy we ob-
served in our previous user study (Yang et al. 2021a). Video
demonstration of the robots’ and human player’s behaviors
described in this section can be found in this link.

https://youtube.com/playlist?list=PL9YN_bKpBjfGL_JRIrPHBPRDrjD6PwffY


Figure 4: Each plot demonstrates the state visitation frequency of the protagonist’s (i.e. red) and antagonist’s (i.e. green) sword
frame in task space. The orange sphere represents the target area, and a darker marker corresponds to a more frequently visited
area.

Games Against Original Protagonist
Mean Std Max Min Tie Prtg’ Win Antg’ Win

MADDPG 90.6 246 1283 -177 2% 58% 40%
ST-MADDPG 5.5e5 -31.6 91.5 419 -192 6% 22% 72%
ST-MADDPG 1e6 -97.14 95.5 273 -300 0% 10% 90%

ST-MADDPG 1.5e6 -188.5 294 1276 -811 0% 8% 92%

Table 1: Statistical analysis for games between MARL trained antagonists and protagonists.

Games Against The Heuristic-based Protagonist
Mean Std Max Min Tie Prtg’ Win Antg’ Win

MADDPG 300.3 365.4 2042 -210 0% 86% 14%
ST-MADDPG 5.5e5 84.3 177.4 713 -94 2% 52% 46%
ST-MADDPG 1e6 120.9 189.6 606 -95 0% 58% 42%

ST-MADDPG 1.5e6 287.4 487 2479 -374 0% 74% 26%

Table 2: Statistical analysis for games between MARL trained antagonists and a heuristic-based protagonist.
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