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Abstract

We propose a multi-agent distributed reinforcement learning
algorithm that balances between potentially conflicting short-
term reward and sparse, delayed long-term reward, and learns
with partial information in a dynamic environment. We com-
pare different long-term rewards to incentivize the algorithm
to maximize individual payoff and overall social welfare.
We test the algorithm in two simulated auction games, and
demonstrate that 1) our algorithm outperforms two bench-
mark algorithms in a direct competition, with cost to social
welfare, and 2) our algorithm’s aggressive competitive behav-
ior can be guided with the long-term reward signal to increase
both individual payoff and overall social welfare.

1 Introduction
Auction is a common resource allocation mechanism in e.g.
networking (Xu et al. 2012b,a), energy (Lucas et al. 2013),
e-commerce (Huang and Kauffman 2011), for its efficient
price discovery in a dynamic market with partial information
(Schindler et al. 2011; Einav et al. 2018). In many such ap-
plications using auction mechanism, agents are designed to
represent the bidders and automatically bid in the auctions.
The agents have private goals and valuations; they behave
autonomously to maximize payoff. They also learn to con-
tinuously improve their strategy in a dynamic environment,
based on other agents’ strategies (Busoniu et al. 2008).

Reinforcement learning (RL) algorithms are often used in
such applications, for their ability to learn with sparse en-
vironment feedback and balance between exploitation and
exploration (Teng et al. 2013; Almasri et al. 2020). How-
ever, challenges remain. Firstly, although RL algorithms are
often used to learn sequential tasks, many of them are still
relatively “short-term”: learning is based on a reward given
immediately after action and state transition, and as the pre-
diction horizon extends farther into the future, influence
of the current action decreases exponentially. Moreover, if
the reward is sparse and delayed, the reward estimation of-
ten has a high variance due to lack of predictable future
states, especially with a big state-action space and variance
in state value (Mataric 1994; Shahriari 2017). If decisions
have long-term effects that are only apparent after a variable
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delay, or if short-term rewards conflict with long-term goals,
such “short-term” algorithms would lead to worse perfor-
mance in the long run. Secondly, many RL algorithms are
designed for single agents, whereas the dynamic nature of a
multi-agent environment requires tradeoff between optimal-
ity and convergence while keeping computation and com-
munication complexity tractable (Feigenbaum et al. 2007).
Also, with multiple agents, decentralized learning may lead
to conflicts between social welfare (i.e. total reward of all
agents) and individual gains (Almasri et al. 2020), this is es-
pecially undesirable in applications where public goods are
distributed among agents, e.g., network resource and energy.
We need a flexible way to incentivize agents to incorporate
common goals, without using hard-coded behavior rules.

To address these challenges, we propose DRACO2, a
multi-agent, long-term learning algorithm with credit as-
signment. We define a reward mechanism that decouples
short-term dense and long-term sparse rewards and enables
learning on different time scales. We use credit assignment
to break down the long-term reward into a weight vector
that is aligned with short-term rewards. In a dynamic and
competitive environment, our core RL algorithm learns the
best-response strategy updated in a fictitious self-play (FSP)
method to improve convergence. Our learning agents have
a state and reward-predictive model to increase prediction
accuracy of the future (i.e. consequence of their actions). Fi-
nally, we use the curiosity-learning concept (Pathak et al.
2017), which has an adversarial setting to encourage the RL
model to explore state-action space where the agent lacks
predictive power.

To demonstrate the performance of DRACO2, we sim-
ulate two repeated auction games with learning-capable
agents as bidders, and one single passive agent as a broker.
The game setup is suitable for analyzing our algorithm, for it
1) creates a dynamic and competitive environment with in-
dependent agents, each with private values and goal; 2) has a
vast state-action space; 3) creates conflicting short-term and
long-term objectives: in the short term, the bidder is incen-
tivized to receive immediate payoff, but in the long term,
winning a bid would reduce the money available for future
bids and bind the agent’s resources, thus incurring oppor-
tunity cost; and 4) provides choices of long-term reward as
incentive to bidders.

Empirical results show that DRACO2 outperforms both



the short-term algorithm and the vanilla curiosity learning
algorithm in a direct competition, although at the cost of re-
duced social welfare. Then, to show the algorithm’s flexibil-
ity in reacting to social welfare incentives, we use a fairness
index score as external long-term reward to replace the origi-
nal profit-seeking goal. As a result, all agents with DRACO2
receive maximum cumulated payoff – it is proof that agents
can be motivated to achieve common goals without compro-
mising their individual gains.

Our contributions:

• DRACO2 is extremely aggressive and competitive in
both simulated auction games, outperforming benchmark
algorithms, showing its capability to learn with sparse,
delayed, sporadic reward and partial information in a dy-
namic, adversarial environment.

• Despite its aggressive behavior, it is easy to influence
DRACO2 by simply replacing the profit-seeking goal
with a fairness goal, compromising neither individual
gain nor privacy.

• We open source our code (source 2021).

2 Related Work
One of the biggest challenges of applying RL in the real
world is to learn behavior towards long-term goals with de-
layed and sparse reward signal (Dulac-Arnold et al. 2021).
One common approach is to extract features from histori-
cal records, thus linking the delayed reward to behaviors in
the past (Hester and Stone 2013). Learning with such algo-
rithms is inefficient since learning from past experiences can
only happen when the delayed outcomes become available.
To address the delay, (A et al. 2018) factorizes one state into
an intermediate and a final state with independent transition
probabilities and predicts each state at different intervals.
Reference (Hung et al. 2019) describes a credit-assignment
method that focuses on the most relevant memory records
via content-based attention; the algorithm is capable of lo-
cating past memory to execute new tasks and generalizes
very well. These approaches focus more on the delay in re-
ward signal and less on sparsity. In our setup, the long-term
reward is delayed, sparse and sporadic.

To address sparsity of rewards, many model-based meth-
ods add intrinsic, intermediate rewards between sparse ex-
trinsic reward signals. Such methods often adopt a super-
vised learning algorithm to predict next states and use the
difference between the predicted and target state-action pair
values as intrinsic reward. Although they propagate predic-
tion inaccuracy into the future, they learn faster. For exam-
ple, (Hester and Stone 2013) separately trains many “fea-
ture models” to predict each feature of the next state as well
as a “reward model” to predict reward. Between sparse ex-
trinsic rewards, the algorithm samples estimated next state
and reward from the models. The models are only updated
when there is new input available. Their approach assumes
that state features are independent and can be learned sepa-
rately, and the accuracy of the reward model is still related
to the sparsity of the reward signal. (Burda et al. 2019) uses
a long-short-term memory (LSTM) to extract features from
past memory that are more relevant to the current task, thus

Table 1: Sec.3 symbol definition

Sym Description Sym Description
< ∈ " bidder E bid value
U backoff decision 1 bidding price
2 joining cost @ backoff cost
? payment I bidding outcome
D imediate payoff * cumulated payoff

improving the model’s generalization properties. The algo-
rithm also uses two independent models to predict next state
and action, the prediction accuracy becomes intermediate,
intrinsic rewards inserted between sparse extrinsic rewards.
In this approach, the intrinsic reward signal is not related to
the extrinsic sparse reward and the final outcome of the game
is not credited to each of the agent’s behaviors. The lack of
credit assignment may affect learning efficiency, especially
when there is conflict between the agent’s short-term and
long-term goals, as is the case in our setup.

Among learning algorithms for distributed decision mak-
ing, no-regret algorithms apply to a wide range of problems
and converge fast; however, they require the knowledge of
best strategies that are typically assumed to be static (Chang
2007). Best-response algorithms search for best responses to
other users’ strategies, not for an equilibrium – they there-
fore adapt to a dynamic environment, but they may not con-
verge at all (Weinberg et al. 2004). To improve the conver-
gence property of best-response algorithms, (Bowling et al.
2002) introduces an algorithm with varying learning rate de-
pending on the reward; (Weinberg et al. 2004) extends the
work to non-stationary environments. However, both these
algorithms provably converge only with restricted classes of
games, and they are hard to implement in large or continuous
state-action space, as is also the case in our set up of a multi-
agent dynamic environment. The FSP method, on the other
hand, addresses strategic agents’ adaptiveness in a dynamic
environment by incrementally evaluating state information
and by keeping a weighted historical record (Heinrich et al.
2015), and it is easy to implement in a large state space. It
therefore befits our requirements.

3 Problem Formulation
We formulate the long-term reward maximization problem
in a generalized repeated auction that can be first- or second-
price, forward or reverse, with any customized winning rules
and payment scheme. Table 1 summarizes the notation.

Let " be the set of bidders. Bidder < ∈ " has at most
1 demand for the commodity at C, denoted as <C ∈ {0, 1}.
Bidder < has two actions: whether to back off UC< ∈ {0, 1},
and which price to bid 1C< ∈ R+; the bidder draws them
from a strategy. Bidder < determines its bidding price 1C<
using some function 5< of its private valuation E< ∈ R+
of the commodity, hence 1C< = 5< (E<); 5< is only known
to the bidder. The competing bidders draw their actions
from a joint distribution cC−< based on (?1, · · · , ?C−1), where
?C ∈ R+ is the final price of the commodity at time C.
The final price is a function of all bidding prices at time



Table 2: Sec.4.1 symbol definition
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Figure 1: Short-term algorithm

C: ?C = 6(bC ), bC ∈ R |" |+ , depending on the auction mech-
anism we use; for example, in a first price lowest-bid auc-
tion, 6(·) = min(·). Bidder < observes the new ?C as feed-
back. The commodity is granted to the bidder with the high-
est score according to the broker’s internal logic, for exam-
ple, in any lowest-bid auction, bidder <’s score is a lin-
early decreasing function of 1C<. <’s utility is denoted by
D< (1C<, IC<), IC< ∈ {0, 1}, if IC< = 1, < wins. A winning bid-
der receives an immediate payoff that is a function of <’s
private value EC< of the commodity, its bidding price 1C<, and
the final price ?C ; losing bidders receive a negative payoff
2C< as cost to join the auction, and bidders that backed off
receive a negative payoff @C< as cost of backoff. We write
the payoff as DC< = ℎ(EC<, 1C<, IC<, ?C , 2C<, @C<). The auction
repeats for ) periods. Each bidder’s goal is to independently

maximize its long-term utility:U = 1
)

)∑
C=1

D< (1C<), ) →∞.

4 Proposed Solution

To solve the long-term reward maximization problem de-
scribed in Sec. 3, we propose an RL algorithm for long-
term reward maximization. We first introduce the bench-
mark short-term algorithm in Section 4.1; that algorithm
maximizes a short-term reward. Then, in Section 4.2, we in-
troduce our long-term reward maximization algorithm that
is based on the short-term algorithm.

Algorithm 1: FSP algorithm for bidder <
1: Initialize k<, Z< arbitrarily, C = 1, [ = 1/C, a, %C−1−< = 0, DC−1< =

0, observe 4C<, create rlC<, slC< and add to memory
2: while true do
3: Take action aC< = (1 − [)kC< + [Z C<
4: Receive %C−<, calculate DC<, observe dC+1< , eC+1<
5: Create and add state to RL memory: rlC+1<
6: Create and add state to SL memory: (slC+1< , aC<)
7: Construct (C<, (

C+1
< , calculate Z C+1< = RL((C<, (C+1< , DC<)

8: Calculate kC+1< = SL(slC+1< )
9: C ← C + 1, [← 1/C, Z C< ← Z C+1< , kC< ← kC+1<

10: end while

Algorithm 2: RL algorithm for bidder <
1: Initialize \, F arbitrarily. Initialize _
2: while true do
3: Input C and (C<, (

C+1
< constructed from RL memory

4: Run critic and get +̂ ((C<,w), +̂ ((C+1< ,w)
5: Calculate D̄< = _D̄< and X (immediate payoff D is reward)
6: Run actor and get `(\), Σ(\)
7: Sample Z C+1< from � (`, Σ), update w and \
8: end while

4.1 Short-Term Algorithm
The short-term algorithm is based on the FSP method, it

addresses the convergence challenge of a best-response al-
gorithm. FSP balances exploration and exploitation by re-
playing its own past actions to learn an average behavioral
strategy regardless of other bidders’ strategies; then it cau-
tiously plays the behavioral strategy mixed with best re-
sponse (Heinrich et al. 2015). Table 2 summarizes the no-
tation for this section. The method consists of two parts: a
supervised learning (SL) algorithm predicts the bidder’s own
behavioral strategy k, and an RL algorithm predicts its best
response Z to other bidders. The bidder has [, lim

C→∞
[ = 0

probability of choosing action a = Z , otherwise it chooses
a = k. The action includes backoff decision U and bidding
price 1. If U is above a threshold, the bidder submits the bid;
otherwise, the bidder backs off for a duration linear in U. We
predefine the threshold to influence bidder behavior: with a
higher threshold, the algorithm becomes more conservative
and tends to back off more bids. Learning this threshold (e.g.
through meta-learning algorithms) is left for future work.

Although FSP only converges in certain classes of games
(Leslie et al. 2006) – and in our case of a multi-player,
general-sum game with infinite strategies, it does not neces-
sarily converge to an NE – it is still an important experiment
as our application belongs to a very general class of games;
empirical results show that by applying FSP, overall perfor-
mance is greatly improved compared to using only RL. The
FSP is described in Alg. 1.

Input to SL includes bidder <’s current bidder informa-
tion dC< (e.g. initial conditions, current reserve pool, etc.),
and environment information visible to <, denoted 4C< (e.g.
number of bidders in the network, number of active bids, fi-
nal price in the previous round, etc.). SL infers behavioral
strategy kC<. The input slC< = (dC<, 4C<) and actual action aC<



Table 3: Sec.4.2 symbol definition
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Figure 2: Long-term algorithms

are stored in SL memory to train the regression model. We
use a multilayer perceptron in our implementation.

Input to RL is constructed from <’s present state rlC<. rlC<
is a combination of dC<; 4C<; previous other bidders’ state
%C−1−<, represented by the final price ?, or %C−< = pC =

{?C
:
|: ∈  }; and calculated immediate payoff DC−1< . To

consider historical records, we take a most recent states
to form the complete state input to RL: (C< = {rlg< |g =

C − a + 1, · · · , C}. RL outputs best response Z< (Fig. 1). We
provide a detailed description of the RL algorithm below.

The RL Algorithm Our approach is similar to (Khaledi
et al. 2016) in the use of a learning algorithm for the bidders
to adjust their bidding price based on budget and observa-
tion of other bidders: we estimate other bidders’ state %−<
from payment information and use the estimate as basis for
a policy. Also, similar to their work, payment information is
only from the broker to each bidder. However, our approach
differs from (Khaledi et al. 2016) in several major points.
We use a continuous space for bidder states (i.e. continuous
value for payments). As also mentioned in (Khaledi et al.
2016), a finer-grained state space yields better learning re-
sults. We do not explicitly learn the transition probability of
bidder states. Instead, we use historical states as input and
directly determine the bidder’s next action.

We use the actor-critic algorithm (Sutton and Barto 2018)
for RL (Fig. 1 and Alg. 2). The critic learns a state-
value function + ((). Parameters of the function are learned
through a neural network that updates with w ← w +
WFX∇+̂ ((,w), where W is the learning rate and X is the TD
error. For a continuing task with no terminal state, no dis-
count is directly used to calculate X. Instead, the average re-
ward is used (Sutton and Barto 2018): X = D− D̄++̂ ((′,w) −
+̂ ((,w). In our case, the reward is utility D. We use expo-

Algorithm 3: Curiosity learning algorithm
1: Initialize model parameters and n arbitrarily. Initialize b
2: while true do
3: Input 0C< and (C<, (

C+1
< constructed from RL memory

4: Run feature extraction and get qC<, q
C+1
<

5: Run forward model, get q̂C+1< , calculate ! 5
6: Run inverse model, get 0̂C<, calculate !8
7: Update forward, inverse, feature extraction model params
8: Infer from credit assignment, extract n C< from attention layer
9: Calculate and output A C

8,<

10: end while

nential moving average (with rate _) of past rewards as D̄.
The actor learns the parameters of the policy c in a multi-

dimensional and continuous action space. Correlated back-
off and bidding price policies are assumed to be normally
distributed: � (`, Σ) = 1√

|Σ |
exp(− 1

2
(x − `)) Σ−1 (x − `)).

For faster calculation, instead of covariance Σ, we estimate
lower triangular matrix ! (!!) = Σ). Specifically, the actor
model outputs the mean vector ` and the elements of !. Ac-
tor’s final output Z is sampled from � through Z = ` + !y,
where ` is the mean and y is an independent random vari-
able from standard normal distribution. Update function is
\ ← \ + W \X∇ ln c(a|(, \). We use m ln�

m`
= Σ(x − `) and

m ln�
mΣ

= 1
2
(Σ(x − `) (x − `)) Σ − Σ) for back-propagation.

The objective is to find a strategy that, given input (C<, de-
termines a to maximize 1

) −CE[
∑)
C′=C D

C′
<]. To implement the

actor-critic RL, we use a stacked convolutional neural net-
work (CNN) with highway (Srivastava et al. 2015) structure
similar to the discriminator in (Yu et al. 2017) for both actor
and critic models. The stacked CNN has diverse filter widths
to cover different lengths of history and extract features, and
it is easily parallelizable, compared to other sequential net-
works. Since state information is temporally correlated, such
a sequential network extracts features better than multilayer
perceptrons. The highway structure directs information flow
by learning the weights of direct input and performing non-
linear transform of the input.

4.2 Long-Term Learning Algorithm
Our core contribution is the long-term reward maximiza-
tion algorithm called DRACO2. It is based on the short-term
RL algorithm from the previous section. We add the follow-
ing features: 1) reward prediction, 2) more exploration in
the early stages of learning, and 3) short- and long-term re-
ward alignment through credit assignment. Points 1 and 2
are achieved through an adapted curiosity model. Point 3 is
achieved through a hierarchical structure. The structure uses
an attentional network that is responsible for learning to as-
sign weights to short-term rewards based on their relevance
to the long-term, sparse extrinsic reward, the learning pro-
cess is only triggered when a new extrinsic reward becomes
available (Fig. 2). Between the extrinsic reward signals, the
underlying RL+curiosity model learns to better predict next
states, actions, and intrinsic rewards. Table 3 summarizes
the notation for this section. Next, we describe the curios-



ity learning and credit assignment models in detail.

Curiosity Model Our curiosity model is based on the
vanilla model from (Pathak et al. 2017). The original model
uses a feature extraction model to identify features that can
be influenced by the agent’s actions, thus improving the
model’s generalization properties in new environments. In
our competitive and dynamic environment, next state de-
pends not only on the current state, but on a number of his-
torical states. We therefore extract features from (C<. The
resulting featurized state vector qC< = feature((C<) replaces
(C< in the previous short-term algorithm, to become the input
of both the actor and the critic models, as well as the credit
assignment model.

The original curiosity model uses a forward model and
an inverse model to predict next state and next action, re-
spectively. These are supervised learning models with the
objective to minimize loss ! 5 = ‖qC< − q̂C<‖22 and !8 =

‖aC< − âC<‖22 . One of the objectives of the forward and in-
verse models is to improve prediction accuracy of the con-
sequence of the agent’s actions, even without any reward
signal. In our game setup, we have short-term intrinsic re-
ward signals (only not aligned and potentially conflicting
with the extrinsic rewards); therefore, we adapt the input to
include the previous intrinsic reward values, and the forward
model’s objective is to improve prediction accuracy of both
the state and the intrinsic reward.

In the original curiosity model, the intrinsic reward is the
loss of the forward model: A C

8,<
= b! 5 , and the bigger the

forward loss, the higher the intrinsic reward. Through the
adversarial design, the model is encouraged to explore state-
actions where the agent has less experience and prediction
accuracy is low. The intrinsic rewards are inserted between
sparse extrinsic rewards to improve learning efficiency de-
spite the sparseness – the authors of (Pathak et al. 2017)
call this internal motivation “curiosity-driven exploration”.
In our approach, we apply the same method with a modi-
fied intrinsic reward definition: A C

8,<
= b!C

5
+ (1 − b)nDC<,

where b is a pre-defined weight factor to balance between
the two short-term objectives, and n is a weight factor from
the credit assignment model (see below). The objective is
to maximize: Ec [

∑
C A
C
8,<
] − !8 − ! 5 . The modified long-

term learning algorithm based on the short-term algorithm
is in Alg. 3. Note that the FSP and Actor-Critic parts are the
same as in Alg. 1 and 2, except the input to both actor and
critic is the featurized state vector qC<, instead of the original
state vector (C<, and reward is A C

8,<
instead of DC<.

Credit Assignment Model The credit assignment model
uses a sequential network (recurrent neural network as en-
coder and decoder) with an attention layer. Typically, such
a sequential network is used to identify correlation between
sequenced input elements enc8 and predict a corresponding
sequence of output elements ˆdec>. The sequential network
can be enhanced with an attention layer. Our credit assign-
ment model is inspired by (Ferret et al. 2020), our model is
different in that we do not decompose the extrinsic reward.

In our credit assignment model, we are not interested in
predicting ˆdec>. Instead, we want to determine the contri-

Algorithm 4: Credit assignment algorithm
1: Initialize model parameters arbitrarily, initialize batch size a
2: Input A C4,< and (C<, · · · , (C−a+1< , DC<, · · · , DC−a+2< from RL

memory
3: Run feature extraction and get qC<, · · · , qC−a+1<
4: for g ← C − a + 1 to C − 1 do
5: Input qg< to encoder, get encoder output enc>
6: Input enc>, Dg+1< to decoder, get output decg>
7: end for
8: Input qC< to encoder, get enc>
9: Input enc>, A C4,< to decoder, get decC>

10: Update model parameters, output n C< from attention layer

bution of each state-action pair towards the final extrinsic
reward A C4,<. Therefore, we trigger the training of the credit
assignment model only when there is a new signal A C4,< at
time C: this signal becomes the last element of the target vec-
tor. We train the model on the batch of a featurized state vec-
tors enc8 = {qC−a+1< , · · · , qC<} with both short- and long-term
rewards as target vector, dec> = {DC−a+2< , · · · , DC<, A C4,<}. In
time step g ∈ [C − a + 1, C], the attention layer generates a
weight vector corresponding to input vector enc8 , marking
its relevance to the current output prediction ˆdec

g

> , until in
the last time step C, the attention layer outputs a weight vec-
tor n C< = {n1, · · · , na |

∑=
8=1 n8 = 1} corresponding to enc8 that

marks their relevance to the last output A C4,<. Model param-
eters are updated with the mean square error between the
generated output ˆdec> and target vector dec>.

The weight vector n C< is then multiplied with the origi-
nal auction payoffs DC<. Through n C<, short- and long-term
rewards are aligned, even if they are conflicting in nature.
Between sparse extrinsic rewards, only the forward network
of credit assignment model is run to infer a weight vector.

5 Evaluation
We train DRACO2 in two repeated auction games with a
Python discrete event simulator. Both games have six bidder
agents and one broker agent. The broker is a passive agent
without learning capabilities. In every time step, the broker
offers one commodity (e.g. object or service) for bidding,
all bidders can join the auction simultaneously. The broker
grants the commodity to the bidder with the highest score;
ties are broken randomly. An immediate payoff is given to
the winner, the value of the payoff is specific to the type of
game. Except the winner, all other participating bidders pay
a fixed cost for joining the auction.

All bidders start with a reserve pool of wealth; it is up-
dated every time step with payoffs and costs. Regardless
of the bidder’s behavior, there is a constant cost each time
step (carrying cost). If the pool is depleted, the game is over
for the bidder, it receives a penalty, and rejoins the game
with the same initial reserve. Otherwise, the game contin-
ues for a certain number of time steps (in our simulation we
take ) = 150 time steps). When the game ends, all bidders
restart the game with the same initial reserve. In the case
of long-term learning algorithms, bidder < receives a long-
term extrinsic reward signal at the end of each game. It can
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(a) Payoff-performance per agent, by al-
gorithm type.
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(b) Fairness-performance.
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(c) Intrinsic reward, comparison of
DRA and CUR agents.
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(d) Forward model loss, comparison of
DRA and CUR agents.

Figure 3: FP with HETERO agents and payoff-signal
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(a) Payoff-performance: 4/6 agents
(bidders2-5) receive max. reward.
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(b) Payoff-performance comparison:
all DRA vs. HETERO.

Figure 4: FP with only DRA agents and payoff-signal

be <’s own cumulated payoff in the reserve pool of wealth:

A C4,< = *C< =
C∑
C−)

Dg<, or overall fairness, defined as the J-

index (Jain et al. 1984) of payments from the broker to the

bidder agents over time: A C4,< =
(∑
<

C∑
C−)

?C<)2

|" |∑
<
( ∑
C−)

C ?C<)2
,∀< ∈ " ,

which is commonly used to measure fairness in networking.
J-index is the reciprocal of the original normalized Herfind-
ahl–Hirschman Index (Rhoades 1993) used to measure mar-
ket concentration. To preserve privacy, extrinsic reward sig-
nals do not contain private agent information. There are free
and occupied bidders: if a bidder wins a bid, its resources
are occupied for a period of time, i.e. service duration, dur-
ing which the occupied bidder cannot submit new bids. Each
free bidder decides on 1) whether to join the auction for the
commodity in the current time step, 2) if so, a bidding price
1 that is lower than or equal to the amount in the reserve
pool of wealth, and 3) other decision factors required by the
specific auction setup. In the first-price reverse auction, ser-
vice duration 3 is correlated with the bidding price 1. The
broker gives bidders a balanced score based on the multipli-
cation of price and service duration. Winner of the auction
gets a immediate payoff of 1 · 3. In the second-price forward
auction, bidders decide on bidding price 1, and 3 is a con-
stant value (to simplify winning criterion and the calculation
of second-price). If it wins, the bidder pays the broker the
second-highest bidding price ? among all bidders. The win-
ner gets an immediate payoff of (1 − ?) · 3. In both games,

during the service duration 3, the winner cannot join any
new auctions.

The bidders may use one of three learning algorithms:
the short-term algorithm (SHT), the long-term algorithm
based on curiosity learning (CUR), and DRACO2, the long-
term algorithm with an attention layer for credit assignment
(DRA). In the setup with homogeneous agents, all six agents
have an algorithm of the same type. In the setup with hetero-
geneous agents, each algorithm is given to two bidders, and
all algorithms compete in the same auction game.

To summarize, we simulate first-price reverse (FP) or
second-price forward (SP) auction, with homogeneous
(DRA, CUR or SHT) or heterogeneous agents (HETERO),
and use either average cumulated payoff per agent (payoff-
signal), or fairness index score (fairness-signal) as extrinsic
reward signals. As performance measure we measure the av-
erage cumulated payoff per agent (payoff performance), and
the overall fairness index score (fairness performance). All
results come from continuous training.

5.1 First-Price Reverse Auction (FP)
First-price reverse auction (lowest-bid-wins) is common e.g.
in long-term energy contracts (Lucas et al. 2013) or net-
work resource allocation (Xu et al. 2012b) where multiple
resource owners bid to sell to one buyer that prefers low
price for a long duration.

Each curve in Fig. 3a represents the average performance
of two agents with the same type of algorithm, in a heteroge-
neous setting. Both DRA and CUR agents outperform SHT:
through the reserve pool of wealth, current behavior influ-
ences bidding decisions in the future and has direct impact
on the delayed extrinsic reward. However, the short-term al-
gorithm values the immediate intrinsic reward much higher
than the extrinsic reward in the distant future, therefore fail-
ing to compete in the game. On the other hand, the DRA
agents clearly performs the best, but at the cost of other
agents with less aggressive algorithms, as is shown by the
low fairness index in Fig. 3b. Figures 3c and 3d compare
training performance of DRA and CUR agents in the game.
The DRA agent not only converges faster, it also converges
to a lower loss and higher intrinsic reward.

If we pitch the aggressive DRA agents against each other,
i.e. all six agents are DRA agents, we have similar a result
(Fig. 4a): only four DRA agents can maximize their cumu-
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(a) Payoff-performance comparison:
payoff-signal vs. fairness-signal.
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(b) Fairness-performance comparison:
payoff-signal vs. fairness-signal.

Figure 5: FP with only DRA agents and fairness-signal

lated payoff over time, although the game has a higher social
welfare, compared to the HETERO case (Fig. 4b). The dif-
ference in individual performance is caused by DRA agents’
aggressive, selfish (i.e. with private indiviual goals), rational
(i.e. act to maximize reward) behavior. They profit from an
unregulated system at the cost of social welfare. In fact, it is
possible for all six agents to maximize their reward: to moti-
vate cooperation, we replace the cumulated payoff with fair-
ness index score as long-term extrinsic reward signal. The
negative impact on social welfare can thus be prevented.

Fig. 5 compares two independent simulation results. The
dotted orange curve is the average cumulative payoff of six
DRA agents when the extrinsic reward is also the cumulative
payoff. The solid blue curve is when the extrinsic reward is
fairness index score. With fairness as incentive, all agents
receive better cumulated payoffs, while achieving a much
higher fairness index score. Hence, with our solution, it is
possible to increase both individual gain and social welfare.

To wrap up, the first simulation setup (Fig. 3) demon-
strates how the DRACO2 algorithm learns quickly and ag-
gressively in a multi-agent, dynamic environment with par-
tial information, a big state-action space, and sparse / de-
layed extrinsic reward. The second setup (Fig. 5) demon-
strates how DRACO2 can be easily optimized to integrate a
system goal while preserving privacy and individual goals.

5.2 Second-Price Forward Auction (SP)
In a second-price forward auction (second-highest-bid-
wins), the broker is a seller that grants the commodity to the
bidder with highest bidding price, but the payment for the
commodity is the second-highest price of all bidding prices.
This type of auction is common for selling public goods,
maximizing welfare rather than seller profit, e.g. in network-
ing resource allocation (Xu et al. 2012a) and e-commerce
(Huang and Kauffman 2011), where multiple end users bid
for resources from one service provider.

Fig. 6 shows similar results in SP as in FP. When three
types of agents co-exist in a profit-oriented setup, the two
DRA agents win at the cost of social welfare (Fig. 6a). So-
cial welfare increases when all agents are DRA agents. Fi-
nally, if the DRA agents are instead given a fairness index
as incentive, social welfare reaches is much higher. This can
be seen from Fig. 6b: with fairness index score as extrinsic
reward signal, social welfare increases.
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(a) Payoff-performance: HETERO w/
payoff-signal, by algorithm type.

0 20 40 60
step ×103

1000

2000

3000

4000

5000

av
g.

 c
um

. p
ay

of
f

All DRA, fairness-signal
All DRA, payoff-signal
HETERO, payoff-signal

(b) Payoff-performance comparison.

Figure 6: SP, all DRA vs. HETERO, payoff-signal vs.
fairness-signal

6 Conclusion
We demonstrate the performance of DRACO2 in two re-
peated auction games. The results show that, with the help of
an attention layer for long-term credit assignment, the DRA
agents behave more aggressively in the competition against
other agents, when the long-term goal is to maximize cu-
mulated private payoff. However, the selfish behavior has a
negative impact on the overall social welfare. To encourage
cooperation, we use fairness as the long-term goal. Simula-
tion results show the improvement in individual payoff and
in overall fairness index score.

We ran the simulations with only six agents, and the sim-
ulated auction mechanisms are relatively simple. In the next
steps, we would focus on increasing the number of agents in
the simulation, give them different individual goals, and test
the algorithm in more complex setups, especially with more
realistic extrinsic reward signals.
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